

 Revision 1.0.3

An Overview of MIPS Multi-Threading

White Paper

Filename : Overview_of_MIPS_Multi_Threading.docx

Version :

Issue Date :

Author :

1.0.3

19 Dec 2016

Saraj.Mudigonda
Sticky Note
None set by Saraj.Mudigonda

Saraj.Mudigonda
Sticky Note
MigrationNone set by Saraj.Mudigonda

Saraj.Mudigonda
Sticky Note
Unmarked set by Saraj.Mudigonda

Saraj.Mudigonda
Sticky Note
None set by Saraj.Mudigonda

Saraj.Mudigonda
Sticky Note
MigrationNone set by Saraj.Mudigonda

Saraj.Mudigonda
Sticky Note
Unmarked set by Saraj.Mudigonda

Saraj.Mudigonda
Sticky Note
None set by Saraj.Mudigonda

Saraj.Mudigonda
Sticky Note
MigrationNone set by Saraj.Mudigonda

Saraj.Mudigonda
Sticky Note
Unmarked set by Saraj.Mudigonda

Saraj.Mudigonda
Sticky Note
None set by Saraj.Mudigonda

Saraj.Mudigonda
Sticky Note
MigrationNone set by Saraj.Mudigonda

Saraj.Mudigonda
Sticky Note
Unmarked set by Saraj.Mudigonda

Saraj.Mudigonda
Typewritten Text
MIPS

Saraj.Mudigonda
Typewritten Text

Saraj.Mudigonda
Typewritten Text

Revision 1.0.3

Contents
1. Motivations for Multi-threading ... 3

2. Performance Gains from Multi-threading ... 4

3. Types of Multi-threading .. 4
3.1. Coarse-Grained MT .. 4
3.2. Fine-Grained MT .. 5
3.3. Simultaneous MT .. 6

4. MIPS Multi-threading .. 6

5. R6 Definition of MT: Virtual Processors ... 7
5.1. Nomenclature ... 7
5.2. Hardware Resources Replicated per Virtual Processor ... 7
5.3. Hardware Resources Shared Among Virtual Processors .. 7
5.4. Implementation-specific Choices .. 7
5.5. Detection of Virtual Processor-MT Feature .. 9
5.6. Enabling and Disabling Virtual Processors .. 9
5.7. Virtual Processor Numbering .. 9
5.8. Software and Hardware States ... 9

6. Virtual Processors and Symmetric Multi-Processing ... 10
6.1. Synchronization primitives .. 10

7. Performance optimizations .. 10
7.1. Data-Driven Scheduling of Threads ... 10
7.2. Inter-thread Communication Unit .. 10

Appendix A. MT ASE – for R2 - R5, not used for R6 .. 11

Saraj.Mudigonda
Sticky Note
None set by Saraj.Mudigonda

Saraj.Mudigonda
Sticky Note
MigrationNone set by Saraj.Mudigonda

Saraj.Mudigonda
Sticky Note
Unmarked set by Saraj.Mudigonda

Saraj.Mudigonda
Sticky Note
None set by Saraj.Mudigonda

Saraj.Mudigonda
Sticky Note
MigrationNone set by Saraj.Mudigonda

Saraj.Mudigonda
Sticky Note
Unmarked set by Saraj.Mudigonda

Saraj.Mudigonda
Sticky Note
None set by Saraj.Mudigonda

Saraj.Mudigonda
Sticky Note
MigrationNone set by Saraj.Mudigonda

Saraj.Mudigonda
Sticky Note
Unmarked set by Saraj.Mudigonda

 Revision 1.0.3

1. Motivations for Multi-threading
As a computer program is executed, there are many events that can cause the CPU hardware
resources not to be fully utilized every CPU cycle. Such events include:
• Data Cache Misses – the required data must be loaded from memory outside the CPU. The

CPU has to wait for that data to arrive from the remote memory.
• Instruction Cache Misses – the next instruction of the program must be fetched from memory

outside the CPU. Again, the CPU has to wait for the next instruction to arrive from the remote
memory.

• Data dependency stalls – the next instruction cannot execute yet as one of its input operands
hasn’t been calculated yet.

• Functional Unit stalls – the next instruction cannot execute yet as the required hardware
resource is currently busy.

When one portion of the program (known as a thread) is blocked for one of these events, the
hardware resources could potentially be used for another thread of execution. By switching to a
second thread when the first thread is blocked, the overall through-put of the system can be
increased. The idea of speeding up the aggregate execution of all threads in the system is known as
“Throughput Computing”. This is in contrast to speeding up the execution of a single thread (or known
as single-threaded execution).
If one replicates an entire CPU to execute a second thread, then the technique is known as multi-
processing.
If one replicates only a portion of a CPU to execute a second thread, then the technique is known as
multi-threading.
A simple graphical example is shown in following figures. The Multi-threaded implementation in Figure
2 does more aggregate work in the same number of cycles as the single-threaded CPU in Figure 1.
Instead of having the execution pipeline being idle while waiting for the Memory data to arrive, the
Multi-threaded CPU executes code for Thread2 during those same memory access cycles. The idle
cycles in black are often known as pipeline “bubbles”.

A. Figure 1 Single thread execution on a single CPU pipeline

B. Figure 2 Multi-threaded execution on a single CPU pipeline

Sharing hardware resources among multiple threads gives an obvious cost advantage to multi-
threading as compared to full-blown multi-processing. Another potential benefit is that multiple threads
could be working on the same data. By sharing the same data caches, multiple threads get better
utilization of these caches and better synchronization of the shared data.
By minimizing how much hardware is replicated for executing a software thread, Multi-threading can
boost overall system performance and through-put with relatively little additional hardware cost.
Because there is relatively less additional hardware, the performance gain is achieved with less
additional power consumption.

Thread1 Stall/Mem
access Thread1 Thread1 Stall/Mem

access
Stall/Mem

access Thread1

Thread1 Thread2 Thread1 Thread1 Thread2 Thread2 Thread1

Saraj.Mudigonda
Sticky Note
None set by Saraj.Mudigonda

Saraj.Mudigonda
Sticky Note
MigrationNone set by Saraj.Mudigonda

Saraj.Mudigonda
Sticky Note
Unmarked set by Saraj.Mudigonda

Saraj.Mudigonda
Sticky Note
None set by Saraj.Mudigonda

Saraj.Mudigonda
Sticky Note
MigrationNone set by Saraj.Mudigonda

Saraj.Mudigonda
Sticky Note
Unmarked set by Saraj.Mudigonda

Saraj.Mudigonda
Sticky Note
None set by Saraj.Mudigonda

Saraj.Mudigonda
Sticky Note
MigrationNone set by Saraj.Mudigonda

Saraj.Mudigonda
Sticky Note
Unmarked set by Saraj.Mudigonda

Revision 1.0.3

2. Performance Gains from Multi-threading

The performance boost from Multi-threading comes from filling up all of the CPU cycles with
productive work that otherwise would be un-used due to stalls. Many applications have low number of
instructions-executed-per-cycle when run in single-threaded mode and are good candidates for multi-
threading.

Any application which can keep the CPU fully busy every cycle with a single thread is not a good
candidate for multi-threading. Such applications are relatively rare.

Since the introduction of the first MT enabled MIPS CPUs, there have been multiple studies of the MT
performance benefits. The studies show a range of performance gains from 15% to 226%.

Refer to these Application Notes on MT performance gains:

• MD00535: Increasing Application Throughput on the MIPS32® 34K® Core Family with
Multithreading.

• MD00547: Multi-threading Applications on the MIPS32® 34K® Core
• MD00545: Multi-threading for Efficient Set Top Box SoC Architectures
• MD00828: Optimizing Performance, Power and Area in SoC Designs using MIPS® Multi-

threaded Processors
• MIPS Creator CI-40 Multithreading Benchmarks

3. Types of Multi-threading

3.1. Coarse-Grained MT
The simplest type of multi-threading is known as Coarse-Grained Multi-Threading (MT). For this type,
one thread runs until it is blocked by an event that creates a long latency stall (normally an all-cache
miss). This long latency stall has to be identified and checked by the programmer and then the
processor is programmatically switched to run another thread.

Conceptually, it is similar to cooperative multi-tasking used in Real-Time Operating Systems, where
one task realizes it is blocked and then hands off the execution time to another task.

This type of multi-threading is also known as Blocked or Cooperative Multi-threading.

Here is a simple example:

CPU Cycle Thread being
executed

Operation

i ThreadA Instruction j from ThreadA

i+1 ThreadA Instruction j+1 (load instruction which misses all
caches)

i+2 ThreadA Instruction j+2 (check for cache miss for instr
J+1)

i+3 Thread Scheduler Cache miss detected; Thread scheduler invoked;
switch to Thread B

i+4 ThreadB Instruction k from ThreadB

https://community.imgtec.com/developers/mips/resources/application-notes/
Saraj.Mudigonda
Sticky Note
None set by Saraj.Mudigonda

Saraj.Mudigonda
Sticky Note
MigrationNone set by Saraj.Mudigonda

Saraj.Mudigonda
Sticky Note
Unmarked set by Saraj.Mudigonda

Saraj.Mudigonda
Sticky Note
None set by Saraj.Mudigonda

Saraj.Mudigonda
Sticky Note
MigrationNone set by Saraj.Mudigonda

Saraj.Mudigonda
Sticky Note
Unmarked set by Saraj.Mudigonda

Saraj.Mudigonda
Sticky Note
None set by Saraj.Mudigonda

Saraj.Mudigonda
Sticky Note
MigrationNone set by Saraj.Mudigonda

Saraj.Mudigonda
Sticky Note
Unmarked set by Saraj.Mudigonda

Saraj.Mudigonda
Sticky Note
None set by Saraj.Mudigonda

Saraj.Mudigonda
Sticky Note
MigrationNone set by Saraj.Mudigonda

Saraj.Mudigonda
Sticky Note
Unmarked set by Saraj.Mudigonda

Saraj.Mudigonda
Sticky Note
None set by Saraj.Mudigonda

Saraj.Mudigonda
Sticky Note
MigrationNone set by Saraj.Mudigonda

Saraj.Mudigonda
Sticky Note
Unmarked set by Saraj.Mudigonda

 Revision 1.0.3

CPU Cycle Thread being
executed

Operation

i+5 ThreadB Instruction k+1

Hardware support for this type of multi-threading is meant to allow quick switching between the
threads. To achieve this goal, the additional hardware cost is to replicate the program visible state –
such as the GPRs and the program counter for each thread. For example, to quickly switch between
two threads, the hardware cost would be having two copies of the GPRs and the program counter.

For this type of multi-threading, only long latency stalls can cause thread switches, as an instruction in
the program has to be added for each stall check. It would be too costly to add such instructions to
check for very short stalls.

3.2. Fine-Grained MT
A more sophisticated type of multi-threading is known as Fine-Grained Multi-Threading. For this type,
the CPU checks every cycle if the current thread is stalled or not. If stalled, a hardware scheduler will
change execution to another thread that is ready to run. Since the hardware is checking every cycle
for stalls, all stall types can be dealt with, even single cycle stalls.

Early implementations of this type of multi-threading caused a thread switch every CPU cycle. The
motivation for switching every cycle was to reduce the possibility of stalling for a previous result from
the same thread. This early type was known as barrel processing, in which staves of a barrel
represented the pipeline stages of the CPU. It was also known as interleaved or pre-emptive or time-
sliced multi-threading. It was conceptually similar to preemptive multi-tasking, used in operating
systems, where the time slice that is given to each active thread is one CPU cycle.

Here is an example of a barrel processor executing 3 threads in round-robin fashion:

CPU Cycle Thread being
executed

Operation Comment

i ThreadA Instruction j from ThreadA Thread switch every
cycle

i+1 ThreadB Instruction k from ThreadB Thread switch every
cycle

i+2 ThreadC Instruction l from ThreadC Thread switch every
cycle

i+3 ThreadA Instruction j+1 from ThreadB Thread switch every
cycle

i+4 ThreadB Instruction k+1 from ThreadB Thread switch every
cycle

i+5 ThreadC Instruction l+1 from ThreadC Thread switch every
cycle

The additional hardware cost of fine-grained Multi-threading is to track the Thread ID of the instruction
in each pipeline stage. In addition because there are multiple threads that are concurrently active,
shared resources such as caches and TLBs might need to be increased in size to avoid thrashing
between the different threads.

Saraj.Mudigonda
Sticky Note
None set by Saraj.Mudigonda

Saraj.Mudigonda
Sticky Note
MigrationNone set by Saraj.Mudigonda

Saraj.Mudigonda
Sticky Note
Unmarked set by Saraj.Mudigonda

Saraj.Mudigonda
Sticky Note
None set by Saraj.Mudigonda

Saraj.Mudigonda
Sticky Note
MigrationNone set by Saraj.Mudigonda

Saraj.Mudigonda
Sticky Note
Unmarked set by Saraj.Mudigonda

Saraj.Mudigonda
Sticky Note
None set by Saraj.Mudigonda

Saraj.Mudigonda
Sticky Note
MigrationNone set by Saraj.Mudigonda

Saraj.Mudigonda
Sticky Note
Unmarked set by Saraj.Mudigonda

Saraj.Mudigonda
Sticky Note
None set by Saraj.Mudigonda

Saraj.Mudigonda
Sticky Note
MigrationNone set by Saraj.Mudigonda

Saraj.Mudigonda
Sticky Note
Unmarked set by Saraj.Mudigonda

Saraj.Mudigonda
Sticky Note
None set by Saraj.Mudigonda

Saraj.Mudigonda
Sticky Note
MigrationNone set by Saraj.Mudigonda

Saraj.Mudigonda
Sticky Note
Unmarked set by Saraj.Mudigonda

Revision 1.0.3

More modern implementations would only cause a thread switch when the currently running thread
becomes blocked. For these more modern implementations, a thread can continue executing until it
would produce a stall.

Here is an example of this more modern type of fine-grained multi-threading:

CPU
Cycle

Thread being
executed

Operation Comment

i ThreadA Instruction j from ThreadA

i+1 ThreadA Instruction j+1 from ThreadA

i+2 ThreadA Instruction j+2 from ThreadA Detect instr j+3 would
stall

i+3 ThreadB Instruction k from ThreadB Detect instr k+1 would
stall

i+4 ThreadC Instruction l from ThreadC

3.3. Simultaneous MT
The most sophisticated type of multi-threading applies to superscalar processors. Superscalar means
that the processor can execute multiple instructions in each CPU cycle.

Simultaneous Multi-threading (SMT) means that each of these instructions which are issued together
can either be from the same thread or each can be from different threads. The hardware thread
scheduler will pick the most appropriate instruction to maximize the utilization of the execution
pipelines.

Here is an example of SMT execution on a dual-issue CPU:

CPU
Cycle

Issue Slot 1 Issue Slot 2 Comment

i ThreadA, instr j ThreadB, instr k 2 instrs from different
threads

i+1 ThreadB, instr k+1 ThreadB, instr k+2 2 instrs from same thread

i+2 ThreadC, instr l ThreadA, instr j+1 2 instrs from different
threads

4. MIPS Multi-threading

The first multi-threaded processor from MIPS was the 34K, which was released in 2005. The 34K
implemented fine-grained multi-threading (the more modern kind which doesn’t have to blindly switch
threads every cycle), with a hardware thread scheduler within the CPU which picks the most
appropriate thread to run each CPU cycle. All subsequent multi-threaded processors from MIPS have
also implemented fine-grained multi-threading including 1004K, interAptiv, I6400, I6500.

The I6400 is a super-scalar CPU and is the first MIPS CPU which also implemented SMT. The I6500
also implements SMT.

Saraj.Mudigonda
Sticky Note
None set by Saraj.Mudigonda

Saraj.Mudigonda
Sticky Note
MigrationNone set by Saraj.Mudigonda

Saraj.Mudigonda
Sticky Note
Unmarked set by Saraj.Mudigonda

Saraj.Mudigonda
Sticky Note
None set by Saraj.Mudigonda

Saraj.Mudigonda
Sticky Note
MigrationNone set by Saraj.Mudigonda

Saraj.Mudigonda
Sticky Note
Unmarked set by Saraj.Mudigonda

Saraj.Mudigonda
Sticky Note
None set by Saraj.Mudigonda

Saraj.Mudigonda
Sticky Note
MigrationNone set by Saraj.Mudigonda

Saraj.Mudigonda
Sticky Note
Unmarked set by Saraj.Mudigonda

Saraj.Mudigonda
Sticky Note
None set by Saraj.Mudigonda

Saraj.Mudigonda
Sticky Note
MigrationNone set by Saraj.Mudigonda

Saraj.Mudigonda
Sticky Note
Unmarked set by Saraj.Mudigonda

Saraj.Mudigonda
Sticky Note
None set by Saraj.Mudigonda

Saraj.Mudigonda
Sticky Note
MigrationNone set by Saraj.Mudigonda

Saraj.Mudigonda
Sticky Note
Unmarked set by Saraj.Mudigonda

 Revision 1.0.3

5. R6 Definition of MT: Virtual Processors

The R6 versions of MIPS32/64 architectures (released in 2014) introduced a simplified definition for
MIPS Multi-threading. In this simplified definition, the entity executing a software thread is known as a
Virtual Processor. The following sections describe Virtual Processors and how they are used.

5.1. Nomenclature
A fully complete CPU is known as a Physical CPU. This includes the instruction fetch, instruction
dispatch, execution pipelines, memory-management-unit, cache hierarchy, load-store unit, etc.

An entity that can execute a software thread is known as a Virtual Processor. This is a subset of a
complete CPU, at a minimum, the programmable state that is usable by the thread – user registers,
the program counter, etc. The other parts of the CPU - the execution pipelines, caches are shared
among multiple Virtual Processors. In a multi-threaded CPU, a Physical CPU can host multiple
Virtual CPUs.

5.2. Hardware Resources Replicated per Virtual Processor
The following are hardware resources which are replicated for each Virtual Processor:
• User-mode state such as GPRs and FPRs
• Kernel-mode state for interrupt and exception processing
• Kernel-mode state for control & status of the CPU
• Kernel-mode state for managing the MMU
• Reset logic
• EJTAG debug logic

5.3. Hardware Resources Shared Among Virtual Processors
The following are hardware resources which are shared among all Virtual Processors within one
Physical Processor:
• The execution pipelines
• The cache hierarchy
• Instruction fetch and dispatch logic
• Load-store Unit

5.4. Implementation-specific Choices
Because the TLB in a high-end CPU might take a very large portion of the die-area, some
implementations might want to share the TLB among all of the Virtual Processors, as opposed to
replicating a TLB for each Virtual Processor. Implementations are allowed to make this choice.

Figure 3 is a high-level block diagram showing the units which are shared among all Virtual
Processors; which are private to one VCPU.

Saraj.Mudigonda
Sticky Note
None set by Saraj.Mudigonda

Saraj.Mudigonda
Sticky Note
MigrationNone set by Saraj.Mudigonda

Saraj.Mudigonda
Sticky Note
Unmarked set by Saraj.Mudigonda

Saraj.Mudigonda
Sticky Note
None set by Saraj.Mudigonda

Saraj.Mudigonda
Sticky Note
MigrationNone set by Saraj.Mudigonda

Saraj.Mudigonda
Sticky Note
Unmarked set by Saraj.Mudigonda

Saraj.Mudigonda
Sticky Note
None set by Saraj.Mudigonda

Saraj.Mudigonda
Sticky Note
MigrationNone set by Saraj.Mudigonda

Saraj.Mudigonda
Sticky Note
Unmarked set by Saraj.Mudigonda

Saraj.Mudigonda
Sticky Note
None set by Saraj.Mudigonda

Saraj.Mudigonda
Sticky Note
MigrationNone set by Saraj.Mudigonda

Saraj.Mudigonda
Sticky Note
Unmarked set by Saraj.Mudigonda

Saraj.Mudigonda
Sticky Note
None set by Saraj.Mudigonda

Saraj.Mudigonda
Sticky Note
MigrationNone set by Saraj.Mudigonda

Saraj.Mudigonda
Sticky Note
Unmarked set by Saraj.Mudigonda

Revision 1.0.3

Figure 3: Block diagram of Physical CPU with 2 Virtual Processors

Instruction
Cache

Data
Cache

Load/Store
Unit

Execution Units

GPRs & FPRs &
ProgramCounter

Exception Logic

Data Portion of
TLB

Code
 Portion of TLB

Instruction
Fetch
Logic

Instruction
Buffers

Dispatch
Logic

Thread
Scheduler

PCPU
Control

Cop0 Registers Private to VCPU0 Private to VCPU1

Legend:
Shared among all
Virtual Processors

Private to
one Virtual
Processor

Implementation Dependent –
shared or private to Virtual

Processors

Statically
Partitioned

MMU Logic

Exception Logic

MMU Logic

Cop0 Registers

GPRs & FPRs &
ProgramCounter

EJTAG Debug Logic EJTAG Debug Logic

Saraj.Mudigonda
Sticky Note
None set by Saraj.Mudigonda

Saraj.Mudigonda
Sticky Note
MigrationNone set by Saraj.Mudigonda

Saraj.Mudigonda
Sticky Note
Unmarked set by Saraj.Mudigonda

Saraj.Mudigonda
Sticky Note
None set by Saraj.Mudigonda

Saraj.Mudigonda
Sticky Note
MigrationNone set by Saraj.Mudigonda

Saraj.Mudigonda
Sticky Note
Unmarked set by Saraj.Mudigonda

Saraj.Mudigonda
Sticky Note
None set by Saraj.Mudigonda

Saraj.Mudigonda
Sticky Note
MigrationNone set by Saraj.Mudigonda

Saraj.Mudigonda
Sticky Note
Unmarked set by Saraj.Mudigonda

Saraj.Mudigonda
Sticky Note
None set by Saraj.Mudigonda

Saraj.Mudigonda
Sticky Note
MigrationNone set by Saraj.Mudigonda

Saraj.Mudigonda
Sticky Note
Unmarked set by Saraj.Mudigonda

Saraj.Mudigonda
Sticky Note
None set by Saraj.Mudigonda

Saraj.Mudigonda
Sticky Note
MigrationNone set by Saraj.Mudigonda

Saraj.Mudigonda
Sticky Note
Unmarked set by Saraj.Mudigonda

 Revision 1.0.3

5.5. Detection of Virtual Processor-MT Feature

Software can detect if the hardware supports the Virtual-Processor version of Multi-threading by
reading the COP0.Config5.VP register field. Config5 is COP0 register 16, Select 5.

5.6. Enabling and Disabling Virtual Processors

Transitioning a Physical CPU from Single-threaded execution to multi-threaded execution is done by
executing an EVP instruction.

Transitioning a Physical CPU from Multi-threaded execution to Single-threaded execution is done by
executing a DVP instruction.

These instructions are privileged and can only be executed in the most privileged execution mode -
kernel-mode (or Root-Kernel mode if MIPS Virtualization is supported). Otherwise, they cause an
exception.

5.7. Virtual Processor Numbering

Each of the Virtual Processors has a unique system-wide identifier that is the combination of the
Cluster Number, the (Physical) Core Number and the Virtual Processor Number. These values are
held in the COP0.GlobalNumber register. GlobalNumber is COP0 register 3, Select 1. The
GlobalNumber values do not change when (either Physical or Virtual) CPUs are power-downed or
disabled.

Each of the active Virtual Processors also has an identifier in the COP0.EBase.VPNum field. EBase is
COP0 register 15, Select 1. In some implementations, the Ebase.VPNum value can change when
(Physical or Virtual) CPUs are power-downed or disabled. These value changes are to keep the CPU
numbering to be contiguous even when a CPU transitions from active to non-active.

5.8. Software and Hardware States

Something to be aware of are the different states that are used in a MT-enabled CPU. There are
Software states and Hardware states.

Software states are used to track the status of the thread. These might say whether the Thread is
runnable/active or whether the thread is completed/merged with its parent. There might be additional
states to say whether the thread is stalled/blocked waiting for an event to occur.

Hardware states are used to track the status of the processor which is meant to run the thread. These
might say whether the processor is enabled or disabled (potentially for power-savings).

Saraj.Mudigonda
Sticky Note
None set by Saraj.Mudigonda

Saraj.Mudigonda
Sticky Note
MigrationNone set by Saraj.Mudigonda

Saraj.Mudigonda
Sticky Note
Unmarked set by Saraj.Mudigonda

Saraj.Mudigonda
Sticky Note
None set by Saraj.Mudigonda

Saraj.Mudigonda
Sticky Note
MigrationNone set by Saraj.Mudigonda

Saraj.Mudigonda
Sticky Note
Unmarked set by Saraj.Mudigonda

Saraj.Mudigonda
Sticky Note
None set by Saraj.Mudigonda

Saraj.Mudigonda
Sticky Note
MigrationNone set by Saraj.Mudigonda

Saraj.Mudigonda
Sticky Note
Unmarked set by Saraj.Mudigonda

Saraj.Mudigonda
Sticky Note
None set by Saraj.Mudigonda

Saraj.Mudigonda
Sticky Note
MigrationNone set by Saraj.Mudigonda

Saraj.Mudigonda
Sticky Note
Unmarked set by Saraj.Mudigonda

Saraj.Mudigonda
Sticky Note
None set by Saraj.Mudigonda

Saraj.Mudigonda
Sticky Note
MigrationNone set by Saraj.Mudigonda

Saraj.Mudigonda
Sticky Note
Unmarked set by Saraj.Mudigonda

Revision 1.0.3

6. Virtual Processors and Symmetric Multi-Processing

Because Virtual Processors have most of the user-mode and kernel-mode software visible states
replicated, software usually cannot tell the difference between a full multiprocessor and multiple
Virtual Processors. That is, a Physical CPU with multiple Virtual Processors looks like a Symmetric
Multiprocessor to most software.

6.1. Synchronization primitives
The synchronization primitives available to Virtual Processors are exactly the same as those used by
Multiprocessors:
DI and EI instructions to disable/enable interrupts
LL and SC instructions to create synchronization primitives such as spin-locks and semaphores.
Double width semaphores can be created by using the LLX and SCX instructions in sequence with
the LL and SC instructions.
Wait and Pause instructions are available to put threads to sleep.

7. Performance optimizations

7.1. Data-Driven Scheduling of Threads

One powerful performance optimization that is available in a MIPS Multi-threaded system is data-
driven scheduling of threads.

In this scheme, a thread is assigned to deal with some specific incoming data. When the data has not
arrived yet, the thread is not active. The thread only becomes active when the data arrives.

The benefit of this thread scheduling scheme is avoiding the use of interrupts to notify the CPU of the
arrival of the data. When interrupts are used, the CPU pipeline needs to be flushed and registers have
to be context switched, all of which takes time.

To achieve this optimization, the arriving data has to send a signal to the waiting thread. The next
section describes a hardware block that enables this signaling.

7.2. Inter-thread Communication Unit

The Inter-Thread Communication Unit is a specialized memory block. The ITCU is an optional HW
block in MIPS MT-enabled processors.

In one mode of operation, this memory block acts like a set of FIFO queues. These FIFO queues are
used as mail boxes for the threads.

The thread waiting for the data accesses the output register of the assigned FIFO queue.

If the FIFO is empty, a signal is sent to the thread to de-activate the thread. The Hardware thread
scheduler then knows not to select this thread for issuing instructions in the next cycle.

Saraj.Mudigonda
Sticky Note
None set by Saraj.Mudigonda

Saraj.Mudigonda
Sticky Note
MigrationNone set by Saraj.Mudigonda

Saraj.Mudigonda
Sticky Note
Unmarked set by Saraj.Mudigonda

Saraj.Mudigonda
Sticky Note
None set by Saraj.Mudigonda

Saraj.Mudigonda
Sticky Note
MigrationNone set by Saraj.Mudigonda

Saraj.Mudigonda
Sticky Note
Unmarked set by Saraj.Mudigonda

Saraj.Mudigonda
Sticky Note
None set by Saraj.Mudigonda

Saraj.Mudigonda
Sticky Note
MigrationNone set by Saraj.Mudigonda

Saraj.Mudigonda
Sticky Note
Unmarked set by Saraj.Mudigonda

Saraj.Mudigonda
Sticky Note
None set by Saraj.Mudigonda

Saraj.Mudigonda
Sticky Note
MigrationNone set by Saraj.Mudigonda

Saraj.Mudigonda
Sticky Note
Unmarked set by Saraj.Mudigonda

Saraj.Mudigonda
Sticky Note
None set by Saraj.Mudigonda

Saraj.Mudigonda
Sticky Note
MigrationNone set by Saraj.Mudigonda

Saraj.Mudigonda
Sticky Note
Unmarked set by Saraj.Mudigonda

 Revision 1.0.3

When the data arrives in the assigned FIFO queue, a signal is sent to the HW thread scheduler to say
the waiting thread is now active. The waiting thread thus becomes a valid candidate for its instructions
to be executed in the next cycle.

This state transition of the waiting thread does not incur any cycle penalty of flushing the pipeline nor
context switching the register files.

Appendix A. MT ASE – for R2 - R5, not used for R6

Prior to Revision 6 of the MIPS32/64 architecture, a more complicated definition of Multi-threading
was used. This older definition is called the MIPS Multi-threading Application Specific Extension (also
known as MT ASE or the MT Module as part of MIPS R5 base architecture). The MT ASE definition is
a super-set of the Virtual Processor definition.

The 34K, 1004K and interAptiv products were designed according to the MT ASE. We will call these
the “Legacy MT ASE products”.

The MT ASE breaks up the Virtual Processor into 2 pieces:
• The User-mode portion - comprising of the GPRs and FPRs, the program counter and a few

COP0 register fields. This User-mode portion is called the “Thread Context” or “TC”.
• The kernel-mode portion - comprising of the exception logic, the MMU logic, the COP0

registers, the TLB and the EJTAG debug block. This kernel-mode portion is called the “Virtual
Processing Element” or “VPE”.

If one TC is assigned to one VPE, then a Virtual Processor is created. This is exactly the same as the
R6 Virtual Processor definition.
But in the MT ASE it is also allowed to assign multiple TC’s to one VPE. Such an entity looks like a
CPU with multiple register files, with each register file assigned to a different thread.
The Legacy MT ASE products allowed both fine-grained and coarse-grain context switching of the
threads. The MT ASE provided the FORK and JOIN instructions for the coarse-grain/cooperative
thread switching.
This type of cooperative context switching requires a custom software execution environment that is
different from the more familiar symmetric multi-processing environments.
Software can detect if the CPU implements the MT ASE by checking COP0.Config3.MT register field.
If Muilti-Threading is supported by the MIPS CPU, one of COP0.Config3.MT or COP0.Config5.VP bits
will be set, but not both bits.
Each Virtual Processor is enabled and disabled by the EVPE and DVPE instructions. Each Virtual
Processor can execute with multiple TCs, this ability is enabled/disabled by the EMT and DMT
instructions.
The MT ASE includes many COP0 registers for lower-level control of TC and VPE behaviors.

Copyright © Wave Computing, Inc. All rights reserved.
www.wavecomp.ai

Saraj.Mudigonda
Sticky Note
None set by Saraj.Mudigonda

Saraj.Mudigonda
Sticky Note
MigrationNone set by Saraj.Mudigonda

Saraj.Mudigonda
Sticky Note
Unmarked set by Saraj.Mudigonda

Saraj.Mudigonda
Sticky Note
None set by Saraj.Mudigonda

Saraj.Mudigonda
Sticky Note
MigrationNone set by Saraj.Mudigonda

Saraj.Mudigonda
Sticky Note
Unmarked set by Saraj.Mudigonda

Saraj.Mudigonda
Sticky Note
None set by Saraj.Mudigonda

Saraj.Mudigonda
Sticky Note
MigrationNone set by Saraj.Mudigonda

Saraj.Mudigonda
Sticky Note
Unmarked set by Saraj.Mudigonda

Saraj.Mudigonda
Sticky Note
None set by Saraj.Mudigonda

Saraj.Mudigonda
Sticky Note
MigrationNone set by Saraj.Mudigonda

Saraj.Mudigonda
Sticky Note
Unmarked set by Saraj.Mudigonda

Saraj.Mudigonda
Sticky Note
None set by Saraj.Mudigonda

Saraj.Mudigonda
Sticky Note
MigrationNone set by Saraj.Mudigonda

Saraj.Mudigonda
Sticky Note
Unmarked set by Saraj.Mudigonda

	1. Motivations for Multi-threading
	2. Performance Gains from Multi-threading
	3. Types of Multi-threading
	3.1. Coarse-Grained MT
	3.2. Fine-Grained MT
	3.3. Simultaneous MT

	4. MIPS Multi-threading
	5. R6 Definition of MT: Virtual Processors
	5.1. Nomenclature
	5.2. Hardware Resources Replicated per Virtual Processor
	5.3. Hardware Resources Shared Among Virtual Processors
	5.4. Implementation-specific Choices
	5.5. Detection of Virtual Processor-MT Feature
	5.6. Enabling and Disabling Virtual Processors
	5.7. Virtual Processor Numbering
	5.8. Software and Hardware States

	6. Virtual Processors and Symmetric Multi-Processing
	6.1. Synchronization primitives

	7. Performance optimizations
	7.1. Data-Driven Scheduling of Threads
	7.2. Inter-thread Communication Unit

	Appendix A. MT ASE – for R2 - R5, not used for R6

