MIIFP S

MIPS® Architecture For Programmers
Volume I-A: Introduction to the MIPS64®
Architecture

Document Number: M D00083
Revision 5.04
November 20, 2013

Unpublished rights (if any) reserved under the copyright laws of the United States of America and other countries.

This document contains information that is proprietary to MIPS Tech, LLC, a Wave Computing company (“MIPS”) and MIPS’
affiliates as applicable. Any copying, reproducing, modifying or use of this information (in whole or in part) that is not expressly
permitted in writing by MIPS or MIPS’ affiliates as applicable or an authorized third party is strictly prohibited. At a minimum,
this information is protected under unfair competition and copyright laws. Violations thereof may result in criminal penalties
and fines. Any document provided in source format (i.e., in a modifiable form such as in FrameMaker or Microsoft Word
format) is subject to use and distribution restrictions that are independent of and supplemental to any and all confidentiality
restrictions. UNDER NO CIRCUMSTANCES MAY A DOCUMENT PROVIDED IN SOURCE FORMAT BE DISTRIBUTED TO A THIRD
PARTY IN SOURCE FORMAT WITHOUT THE EXPRESS WRITTEN PERMISSION OF MIPS (AND MIPS’ AFFILIATES AS APPLICABLE)
reserve the right to change the information contained in this document to improve function, design or otherwise.

MIPS and MIPS’ affiliates do not assume any liability arising out of the application or use of this information, or of any error or
omission in such information. Any warranties, whether express, statutory, implied or otherwise, including but not limited to the
implied warranties of merchantability or fitness for a particular purpose, are excluded. Except as expressly provided in any
written license agreement from MIPS or an authorized third party, the furnishing of this document does not give recipient any
license to any intellectual property rights, including any patent rights, that cover the information in this document.

The information contained in this document shall not be exported, reexported, transferred, or released, directly or indirectly, in
violation of the law of any country or international law, regulation, treaty, Executive Order, statute, amendments or
supplements thereto. Should a conflict arise regarding the export, reexport, transfer, or release of the information contained in
this document, the laws of the United States of America shall be the governing law.

The information contained in this document constitutes one or more of the following: commercial computer software,
commercial computer software documentation or other commercial items. If the user of this information, or any related
documentation of any kind, including related technical data or manuals, is an agency, department, or other entity of the United
States government ("Government"), the use, duplication, reproduction, release, modification, disclosure, or transfer of this
information, or any related documentation of any kind, is restricted in accordance with Federal Acquisition Regulation 12.212
for civilian agencies and Defense Federal Acquisition Regulation Supplement 227.7202 for military agencies. The use of this
information by the Government is further restricted in accordance with the terms of the license agreement(s) and/or applicable
contract terms and conditions covering this information from MIPS Technologies or an authorized third party.

MIPS, MIPS I, MIPS II, MIPS Ill, MIPS IV, MIPS V, MIPSr3, MIPS32, MIPS64, microMIPS32, microMIPS64, MIPS-3D, MIPS16,
MIPS16e, MIPS-Based, MIPSsim, MIPSpro, MIPS-VERIFIED, Aptiv logo, microAptiv logo, interAptiv logo, microMIPS logo, MIPS
Technologies logo, MIPS-VERIFIED logo, proAptiv logo, 4K, 4Kc, 4Km, 4Kp, 4KE, 4KEc, 4KEm, 4KEp, 4KS, 4KSc, 4KSd, M4K, M14K,
5K, 5Kc, 5Kf, 24K, 24Kc, 24Kf, 24KE, 24KEc, 24KEf, 34K, 34Kc, 34Kf, 74K, 74Kc, 74Kf, 1004K, 1004Kc, 1004Kf, 1074K, 1074Kc,
1074Kf, R3000, R4000, R5000, Aptiv, ASMACRO, Atlas, "At the core of the user experience.", BusBridge, Bus Navigator, CLAM,
CorExtend, CoreFPGA, CorelV, EC, FPGA View, FS2, FS2 FIRST SILICON SOLUTIONS logo, FS2 NAVIGATOR, HyperDebug,
HyperJTAG, IASim, iFlowtrace, interAptiv, JALGO, Logic Navigator, Malta, MDMX, MED, MGB, microAptiv, microMIPS, Navigator,
OCl, PDtrace, the Pipeline, proAptiv, Pro Series, SEAD-3, SmartMIPS, SOC-it, and YAMON are trademarks or registered
trademarks of MIPS and MIPS’ affiliates as applicable in the United States and other countries.

All other trademarks referred to herein are the property of their respective owners.

alt{t NoKIiSOiNS c20 ti23N1-Y Y Siig +2tizY'S Ln1Y Lylli2Ra0ii2y 2 iKS alt{cnt NOKIiSOidIS: wSaiai2y ponn

MIPS® Architecture For Programmers Volume I-A: Introduction to the MIPS64® Architecture, Revision 5.04

Contents

Chapter 1: About ThiS BOOK .o, 11
1.1: TypOgraphiCal CONVENTIONSuuuiiiiiiiieeeee ittt e e e e e e e ettt e et e e e e e e e s e e e nbbbbe e e e eeaaeeeeeaaannnbssaeeeeaaaaaaaaan 11
0 | = o I = PP PO P PP PP PPPPPRPPPPPPPPN 12

IO 2 =T] o B) TSP RUTPTP 12
R T O o 10 [T g = | AP PO PP TP PP PP PUPPPRPPPPPPPPN 12
1.2: UNPREDICTABLE and UNDEFINEDc.uutiiiiiiiiiieiiee ettt ettt et sbe e e e neeeanes 12
1.2.1: UNPREDICTABLE ...ttt ettt etttk e et e e ab e e e be e e et e e ekt e e e bt e e e ebbe e e enees 12
1.2.2: UNDEFRINED ...ttt ettt h ettt ettt o4kt e ek b e e ek bt e e ekt e e ekt e e e embe e e bt e e e enbneeanteas 13
L.2.3: UNSTABLE ..tttk bttt e e a bt e ekt e e ke e e 4k bt e e ebb e e ek bt e e amb e e e anbe e e enbneeanteas 13
1.3: Special Symbols in PSeudoCode NOLATIONuuiiiiiiiiieae ettt e e e e e e e e e e eeaeaaeas 13
1.4: FOIr MOTE INFOIMALION ...ttt e ettt e e h e e e ekt e e e st e e e e e bt e e e e s aabreeeeenne 16
Chapter 2: The MIPS Architecture: An INtrodUCTIONuviii i e e 17
2.1: MIPS INSIIUCHION SEE OVEIVIEWiitiiiee ittt ettt ettt e ekttt e e e ekttt e e e e a b bt e e e s bbbt e e e e anba e e e e e anbbreeeeaas 17
2.1.0: HiStONCAl PEISPECIIVE. ... eeeiee ittt et e e et e e e et e e e e nneeas 17
2.1.2: ArChiteCtural EVOIULIONceiiiiiiieiie ittt et e e eas 18
2.1.3: Architectural Changes Relative to the MIPS | through MIPS V Architectures............ccccoovveveeinnnnn. 22
2.2: CoMPlIaNCe ANA SUDSELINGeeieeiiiiiiie itttk e e sttt e e s eab et e e e st e e e e s annneeeeas 22
2.3: Components of the MIPS AFChItECIUIEeiiiiiiiie et e e st eee e 25
2.3.1: MIPS Instruction Set ArchiteCtUre (ISA)ooueeiii et 25
2.3.2: MIPS Privileged Resource ArchiteCture (PRA)ueiiioiiieiie ettt 25
2.3.3: MIPS Modules and Application Specific EXENSIONS (ASES)........uuviiiiiiiiieiiiiiiee e 25
2.3.4: MIPS User Defined INSrUCtIONS (UDIS).....ciuiiiiieiiiiiiiee ittt 25
2.4: Architecture Versus IMpPlemMENTAtiON.c.uuiii ittt e st e e st eee e 25
2.5: Relationship between the MIPSI3 ArChItECIUIEScoiiuiiiiiiiiiiiie e 26
2.6: PIPEIINE ATFCRITECIUNE ettt et e e e ekttt e e sttt e e e e ab et e e e st b e e e e s annbneaee s 28
2.6.1: Pipeline Stages and EXECULION RAESoouuiiiiiiiiiiii e 28
2.6.2: Parallel PIPEIINEoeiiiiiieii ettt 29
2.6.37 SUPEIPIPEIINE ..ottt ettt e ottt oo a bttt e e e st e e e et e e et e e s 29
2.6.4: SUPEISCAIAI PIPEIINE ..ottt e e et e e e et e 30
2.7: LOAA/STOrE AICRITECIUMEeii ettt ekttt e et e e st e e s s et e e s annbneee e s 30
2.8: Programming IMOGEIooi ittt e et e e e ettt e e e bt e e e e e e e ee e 31
2.8.1: CPU DaAt@ FOIMALS.....ccii ittt e ettt e ettt ettt e e e et e e e e et e e e e e e e s et eeeeeeas 31
2.8.2: FPU Data FOIMMALScooiiiiiiiiiiee ettt e e e e e et e et e e e e e e n e e e e e e s 31
2.8.3: COPrOCESSOIS (CPO-CP3) ...iiiiitiiiiieiitiei ettt ettt ettt e sttt e e s st e e e s bbbt e e st e e e s annneeas 32
R R S O W =T 1] 1= £ PRSP 32
R S oM e A =T] (=T £ PR PRPTP 34
2.8.6: Byte Ordering and ENGIANNESScoiuuiiiiiiiiiiie ettt e e sttt e e st e e aanneeas 38
2.8.7: MEMOTY ALIGNMIENTeiiiiittete ettt ettt e e s e s bbb et e e e sttt e e st e et e e s st e e e s annnneeas 40
2.8.8: MBIMOIY ACCESS TYPBS ...ttt ettt e ettt et e et ettt ettt e e e et e e e e et e e e e e e e e e et e e e e e e eeas 41
2.8.9: Implementation-SPECIfiC ACCESS TYPES ...ceiuiiiiieiiiiiie ettt ettt ettt et e e nnneeas 43
2.8.10: Cacheability and Coherency Attributes and ACCESS TYPES......uuuiiiiiiiiiiieiiiiet et 43
2.8.11: MiXING ACCESS TYPES ...nettiiieeiiiiete ettt e ettt ekt e o4 et e o4 a bbbt e e e e s bt e e e e st e e e e et e e e e e st e e e e e nbeeas 44
2.8.12: INSIIUCTION FEICNES ...ttt e bt e et e e e et e e e e nbeeas 44
Chapter 3: Modules and Application Specific EXIENSIONSoccuiiiiiiiiiiiiiiiiiiee e 49
3.1: Description of OptioNal COMPONENTSiiiiieiii ittt e e e e e e s r e e e e e e e e s s s reraaeeaeeeesesansrnrraareeeaeas 49

MIPS® Architecture For Programmers Volume I-A: Introduction to the MIPS64® Architecture, Revision 5.04 4

3.2: List of Application SPEeCIfiC INSIIUCLIONSooiiiiiiiiie et e e e e eeae s 50

3.2.1: The MIPS16e™ Application Specific Extension to the MIPS32 and MIPS64 Architecture.............. 50
3.2.2: The MDMX™ Application Specific Extension to the MIPS64 ArchiteCtures..........cccccceviiiiivininenen. 51
3.2.3: The MIPS-3D® Application Specific Extension to the MIPS Architecture...........cccccccooiiiiiiiiiiiennen. 51
3.2.4: The SmartMIPS® Application Specific Extension to the MIPS32 Architecture..............ccccuvvvveeeneen. 51
3.2.5: The MIPS® DSP Module to the MIPS ArChiteCtUIecuuuiiiiiiiiieee e 51
3.2.6: The MIPS® MT Module to the MIPS ArChIitECIUIe.........ccuiiiiiiiiiiie e 51
3.2.7: The MIPS® MCU Application Specific Extension to the MIPS ArchiteCturecccccooeiiiiiviennen. 51
3.2.8: The MIPS® Virtualization Module to the MIPS ArChiteCtureccccooiiiiiiiiiiiiieieeee 51
3.2.9: The MIPS® SIMD Architecture Module to the MIPS ArchiteCture............ccccuvveieiiiiieeiiiieeeee 52
Chapter 4: Overview of the CPU INStrucCtion Set ..., 53
4.1: CPU Instructions, Grouped BY FUNCLON..........ciiiiiiiiiieiiiiii ettt 53
4.1.1: CPU Load and StOre INSEIUCTIONS.uiiiieeeie ittt ie e e e e e e e e e e ettt et e e e e e e e s e s s saabbeaeeeeeeaeeeeaeaannnreneees 53
4.1.2: COMPULALTIONEAI INSTIUCTIONS.eeeiiiiiit ettt s e e e e e e e 57
4.1.3: Jump and Branch INSIIUCTIONS.oiiiiiiiiiieiiiei ittt s e e e e e e 61
4.1.4: MiISCEllaN@OUS INSIIUCTIONSt ettt e e e e e ettt e e e e e e e e e s et n bt eteeeeeaaeeeeaeaannneeneees 63
4.1.5: COPrOCESSON INSIIUCTIONSiiiiiiiiiiiie ettt e et e e et e e e e e st e e e e e b e e e aneeas 65
4.2: CPU INSIIUCHION FOIMMALSeeiiiiieeeiee ittt e e ettt et e e e e e e s e s e bbbttt e eeeaeeaesaaanssbbsaeeeeeeeeeeesesannnennenes 67
4.2.1: CPU INStrUCION RESIICHONSviitiiiiiiiiie e ettt e ettt e e e e e e e e e e st eeeeaaeeeeaeaannnneneees 67
Chapter 5: Overview of the FPU INStrUCTION Sel........cc.uiiiiiiiiiiii e 69
SR I = 1T P Y VA @ 1 4]0 = 141 11 2 PR 69
5.2: Enabling the Floating POiNt COPIOCESSONciiiiiiiiieiieeit e e e e e e e ee sttt e e e ee e e e s e s ss st reeeeaeeaeeesessnnsenrreeeeeeaeas 70
R M | =t oy S =T o o = o Y PSPPSRI 70
R e I T = N I o =2 70
I I T = L1 o TN o 1 B o T 4= LSO 70
5.4.2: FIXEA POINE FOMALS ...oiiiiiiiiiii ittt e e e et e e e ettt e e e s st e e e e e bt e e e e e nreees 75
5.5: Floating POINt REQISTEr TYPES ..iiiiiiiiiiiiiieiee e e e e s ee ettt e e e e e e et e s st e e e e eeaeesessssssbaeaeeeeeaeaeesansnnnsennreneeeaaens 75
ST I o = O =T 1 (= gl 1Y o o = £SO 76
5.5.2: Binary Data Transfers (32-Bit @nd 64-Bit)uuuiiiieiiiiiiiiiiiiieiiee e r e e e e e e e eeeeeee s 76
5.5.3: FPRs and Formatted Operand LayOUL............uuuuriiieeeiiiiiiiiiiiiieireeee e e e ssssiieeee e e e e e e e e s s s nnnsnanneeeeeees 77
5.6: Floating Point Control REGISIErS (FCRS) .iiiiieiiiiiiiiieiieeee ettt e e e e e e s s e e e e e e e e e s e e snnenareeeeeaeeas 78
5.6.1: Floating Point Implementation Register (FIR, CP1 Control Register 0)cccvvevveveeeeeeiiiiciiiirieenen. 78
5.6.2: User Floating point Register mode control (UFR, CP1 Control Register 1)cccccveeeeveviiiivinninennnn. 81
5.6.3: User Negated Floating point Register mode control (UNFR, CP1 Control Register 4).................... 81
5.6.4: Floating Point Control and Status Register (FCSR, CP1 Control Register 31)......cccccceveevcvvvvvvnnnnnn. 82
5.6.5: Floating Point Condition Codes Register (FCCR, CP1 Control Register 25)......ccccccceeeeviivcvivvenennnn. 86
5.6.6: Floating Point Exceptions Register (FEXR, CP1 Control Register 26)cccvvevveeeeeeeeiieiiiiivneenen 86
5.6.7: Floating Point Enables Register (FENR, CP1 Control Register 28).........cccccvviiiieiieeeeeeiiiiciinineeeeen 87
5.7: Formats of Values Used iN FP REQISIEISccoii ittt e e s e e e e e e e e s e s snenarneneeaaeas 88
LIRS o U (o =Y o 1T PR 88
RS I (o= o) 1o] O o] T [1o] 1 1SS 89
e o O [S {1 ot 1o £ EPOOUPPRPTPPPR 93
5.9.1: Data TranSfer INSIIUCTIONSuiiiie ettt et e e e et e e e et e e e e e nreeas 93
5.9.2: ArtNMETIC INSIUCHIONS ...ttt e et e e ettt e e e e et e e e et e e e e e nreees 95
5.9.3: CONVEISION INSIIUCTIONS.eiiiiiiiiiii ettt ettt e et e e e et e e e e e st b e e e e e bt e e e e e nreees 97
5.9.4: Formatted Operand-Value MoVe INSTIUCIONSccceiiiiiiiiiiiiiiiece e e e e e e e aeeeeee s 97
5.9.5: Conditional Branch INSITUCLIONSiuuiiiiiiiiiiiie ittt e e e e e e s ennneeas 98
5.9.6: MiISCEellan@OUS INSITUCLIONSuviiiiieiiiiiie ettt e sttt e e sttt e e s st e e e s st e e e s annnneeas 99
5.10: Valid Operands for FPU INSITUCHIONScviiiieeiii it ie e e st e e e e e e e s s s st eeee e e e e e e s e s nnnnnenenees 100
5.11: FPU INSIIUCHION FOIMMALS. ... itiiiiieiiiiiii ettt s ettt e e sttt e e s sttt e e s enbt e e e e snnbn e e e s anneneeas 101
L0 0 ' 0T] (Y g 1=) = Lo o 1o (P 102

5 MIPS® Architecture For Programmers Volume I-A: Introduction to the MIPS64® Architecture, Revision 5.04

Appendix A: Instruction Bit ENCOAINGS ...ccivviiiiiiiiiieeeeee e 107

A.1: Instruction Encodings and INSrUCHION ClASSESccooiiiiiiiiiiiiiiiiie et e e e e e e 107
A.2: Instruction Bit ENCOING TABIES.....cooi ittt e e e e e e e st e e e e e e e e e e e e e enns 107
A.3: Floating Point Unit Instruction FOrmat ENCOINGSooiiuiiiiiiiiiiiee ettt e e e e e e e 116
AppPeNndiX B: REVISION HISTOIMY ...t e s s e e e e e e e e et e e e e e e e e e e s anaaa e e e eeeeeeeeannes 117

MIPS® Architecture For Programmers Volume I-A: Introduction to the MIPS64® Architecture, Revision 5.04 6

Figures

Figure 2.1:
Figure 2.2:
Figure 2.3:
Figure 2.4:
Figure 2.5:
Figure 2.6:
Figure 2.7:
Figure 2.8:
Figure 2.9:

Figure 2.10:
Figure 2.11:
Figure 2.12:
Figure 2.13:
Figure 2.14:
Figure 2.15:
Figure 2.16:
Figure 2.17:
Figure 2.18:
Figure 2.19:

Figure 3.1:
Figure 4.1:
Figure 4.2:
Figure 4.3:
Figure 5.1:
Figure 5.2:
Figure 5.3:
Figure 5.4:
Figure 5.5:
Figure 5.6:
Figure 5.7:
Figure 5.8:
Figure 5.9:

Figure 5.10:
Figure 5.11:
Figure 5.12:
Figure 5.13:
Figure 5.14:
Figure 5.15:
Figure 5.16:
Figure 5.17:
Figure 5.18:
Figure 5.19:
Figure 5.20:
Figure 5.21:
Figure 5.22:
Figure 5.23:
Figure 5.24:

MIP'S AFCRITECIUIES ... ettt e e oottt e e e e e e a4 e e e bbbttt e e e e e e e e e aa e nnebbbneeeeeeas 18
Relationship of the Binary Representations of MIPSr3 ArchiteCtures............cccuvvveieeiiieeeniiiiiiiieeeen 27
Relationships of the Assembler Source Code Representations of the MIPSr3 Architectures............... 28
One-Deep Single-Completion INStruction PIPElINe...........coiiiiiiiiiiiiiee e 29
Four-Deep Single-Completion PIPelINe...... ... 29
FOUr-Deep SUPEIPIPEIINE ...ttt e e e e e e s ettt e e e e e e e e e e s e s aaebeeeees 30
Four-Way SUPErsCalar PIPEIINE ittt e e e e e e e e 30
(01 U LT 1] (=] =S PUUUP 34
FPU Registers for @ 32-Dit FPUcooiiiiiee sttt n e e e e e e e e e e e aeaees 36
FPU Registers for a 64-bit FPU if STAtUSER IS L......vviiiiiiiiiiieiiiiee ettt 37
FPU Registers for a 64-bit FPU if SLAUSER IS O..c.evvviiiiiiiiiiieiieee ettt 38
Big-ENdian BYIE OFAEerINGcceoiiiiiiii i e e e e e e e e e e e e et et et e e e e e a e e e e e e s e e e e aeaaeaeaeaeees 39
Little-ENdian BYte OFUEIINGcciiiiiiie e e e e e e e e e e e e e e e e e e et et e e e e e ae e et s a s e e e e s e aaeaeaaeaeaeaeees 39
Big-Endian Data in DoubleWord FOMMALuuuiiiiiiieieie e a e e e e e e e e e aeaees 40
Little-Endian Data in DoubIeWOrd FOIMAL..........cc.uuiiiiiiieiiee e 40
Big-Endian Misaligned Word AQAreSSING........uuuuuuuiiiieieiiee e e e eeeeee ettt s e e s e e e e e e eaeaaaaaaaaanes 41
Little-Endian Misaligned Word AdAreSSINGuuue i iiieieieie e e eeeee ettt a e a e e e e e e e e aeaeaaes 41
Two instructions placed in a 64-bit wide, little-endian MemMOory ... 45
Two instructions placed in a 64-bit wide, big-endian MemMOrY ..o 45
MIPS ISAS AN ASESoitiiiieiiiiie ettt ettt e e ettt e e e e ettt e e e e bbbt e e e e et bt e e e e e s ba e e e e e anbaeeeeeanbaeeeeennees 50
Immediate (I-Type) CPU INSrUCHION FOMMEALuiiiiiiiiiiiiiiie et 68
Jump (J-Type) CPU INSIIUCLION FOIMALeiiiiiiiieieiii ittt e e e e e e e e 68
Register (R-Type) CPU INSrUCHION FOIMEAL........cuiiiiiiiiiiiieeeee i 68
Single-Precisions Floating Point FOrMAt (S)ccooiiiiiiiiiiiii e e e e e ee e 72
Double-Precisions Floating Point FOrMAt (D)uueuiiiiieieiee e a e e e e e e e e e e 72
Paired Single Floating PoiNt FOrMat (PS)uuuuiuiiiiiiie it e e e e e e e e e e e e 72
Word FiXxed POINt FOMAt (VW) ... e as 75
Longword Fixed POINt FOMAL (L)oiiiiiieieieiiiiiiiees e e et e s e e e e e e e e e e e e aaaeaeaeees 75
FPU Word Load and MOVE-t0 OPEIAtIONScc.uuuiiiiiiiiieaeeee ittt e e e e e e s e e e e e e e e s annneeeees 77
FPU Doubleword Load and MoVE-t0 OPEIAtIONSuuieaiiiiiiiiiiiiiieit e e et e e e 77
Single Floating Point or Word Fixed Point Operand in an FPRoiiiiiiiiiiieceeeee s 78
Double Floating Point or Longword Fixed Point Operand in an FPR............ocooiiiiiiieee, 78
Paired-Single Floating Point Operand in an FPRooiiee e 78
FIR REQISIEI FOIMAL ... e e e e e e e e e e et et e e e e e e et a e e e e e e e e e e eaaeaeaaeeees 79
UFR REQISTEI FOMMAL ... e e et e e e e e e et et e e e e e e e e e e s e e e e e e eaeaeaaeeees 81
UNFR REQISIEr FOMMALciiiii i e s e e e e e e e e e e e e et et e e e e e e e e et s e e e e e e s e e e e aeaaeaeaaeeees 82
FCSR REQISIEr FOIMAL ... e e e e e e e e et et et e e et e e s e e e e s e e e e e eaaeaeaeeeees 83
FCCR REQISIEr FOMMAL ... e e e e e e e e e e e e e et et e e e e e e e e e ettt e e e e e e e s e e e e eeaaeaeaeeeees 86
FEXR REQISIEN FOIMMIALo e s e e e e e e e e e e e e et et et e e e e e e et e s e e e e e e e e e e eaaeaeaaaeees 87
FENR REQISIEr FOIMAL ..o e e e e e e e e et et e e e et e e s e e e e s e e e e e eaaeaeaaeeees 88
[-Type (Immediate) FPU INSruCtion FOMMALueiiiiiiiiiiiiiiiie e 103
R-Type (Register) FPU INSrUCtION FOIMALuuuiiiiiiiiieiiiiiiiiee e 103
Register-Immediate FPU INStruCtion FOrMALciiiiiiiiiii i 103
Condition Code, Immediate FPU INStruCtion FOIMALcooiiiiiiiiiiiiiiiiiiie e 103
Formatted FPU Compare INStruCtion FOIMAL...........euiiiiiiiiiiiiiiiiieeet et 103
FP RegisterMove, Conditional INStruCtion FOrMaALccoeeiiiiiiiiiiieieeee e a e 103
Four-Register Formatted Arithmetic FPU Instruction FOrmatooovvvviiiiiiiiiiiiiiiie e 103

MIPS® Architecture For Programmers Volume I-A: Introduction to the MIPS64® Architecture, Revision 5.04

Figure 5.25: Register Index FPU INStrUCtiON FOIMAL............uuuiriiiiiiiiie e a e e e e e e e 104

Figure 5.26: Register Index Hint FPU INStrUCtioN FOrMALuuueiiiiiiiiii i e e 104
Figure 5.27: Condition Code, Register Integer FPU Instruction FOrmatoooovvvviiiiiiiiiiiiiiiie e 104
Figure A.1: Sample Bit ENCOAING TaDIEuuiiiiiiiie e 108

MIPS® Architecture For Programmers Volume I-A: Introduction to the MIPS64® Architecture, Revision 5.04 8

Tables

Table 1.1:
Table 2.1:
Table 2.2:
Table 4.1:
Table 4.2:
Table 4.3:
Table 4.4:
Table 4.5:
Table 4.6:
Table 4.7:
Table 4.8:
Table 4.9:

Table 4.10:
Table 4.11:
Table 4.12:
Table 4.13:
Table 4.14:
Table 4.15:
Table 4.16:
Table 4.17:
Table 4.18:
Table 4.19:
Table 4.20:
Table 4.21:
Table 4.22:
Table 4.23:
Table 4.24:
Table 4.25:
Table 4.26:

Table 5.1:
Table 5.2:
Table 5.3:
Table 5.4:
Table 5.5:
Table 5.6:
Table 5.7:
Table 5.8:
Table 5.10
Table 5.9:

Table 5.11:
Table 5.12:
Table 5.13:
Table 5.14:
Table 5.15:
Table 5.16:
Table 5.18:
Table 5.17:

Symbols Used in Instruction Operation StatemMENTS........coooiiiiiiiiiiiiii e 13
Unaligned Load and StOre INSITUCHIONScooiiiiiiiie e e e e e e e e e e as 41
Speculative INSIIUCHION TEICNES it e e 46
Load and Store Operations Using Register + Offset Addressing Mode............cccccoeeiiiiiiiiiiiiiiiiiineeennn, 54
FPU Load and Store Operations Using Register + Register Addressing Mode.............cccccuvveeeieienennnnn. 54
Aligned CPU Load/Store INSITUCHIONS. it eeeeeaesseananranaaas 55
Unaligned CPU Load and Store INSIFUCHIONScvviiiiiiiiiiiiiiiie e ss e e 55
Atomic Update CPU Load and Store INSIIUCIONSuuiiiiiiiiieiiiiiiiiite et e e 56
Coprocessor Load and StOre INSTIUCTIONSuutiiiiiiiiieeae ittt e et e e e e e e e e eeeeeeeas 56
FPU Load and Store Instructions Using Register + Register AddreSSing..........covvvvvvvevviiiiiiiiiiieieieeeeenn 57
ALU Instructions With a 16-bit Immediate OPerand............ccooeriiiiiiiiiiiii e 58
Three-Operand ALU INSIIUCTIONSuuuiiiiiiiieaei ittt e e e e e e s r e e e e e e e e e anebeeee s 58

TWO-Operand ALU INSTIUCTIONSuuiiiiieiiieie ettt e e e e e e e e e bbb e b e e e e e e e e e e e e aannnbeeeees 59
SHIFEINSIIUCTIONS ..ttt e e e e e e s e e e bbb ettt e e e e e e e e e s et aebeeeeeeas 59
MUILIPIY/DIVIAE INSIFUCTIONS. ...ttt ettt e e ettt et e e e e e e e et eeraeeeeas 60
Unconditional Jump Within a 256 Megabyte RegiONeeiiiiiiiiiiiiiiiiiie e 62
Unconditional Jump uSiNg ADSOIUE AGUIESS.......ciiiiiiaiiiiit et 62
PC-Relative Conditional Branch Instructions Comparing TW0O ReQIStersS.cccueeeiiiiiiiiiiiiiiiiiiiieeenn 62
PC-Relative Conditional Branch Instructions Comparing With Zero............cccccceeiiiiiiiiiiiiiiiieieeeen 63
Deprecated Branch LiKely INSITUCHIONS.uuuiiiiiiiiiaii ittt a e 63
SerialiZation INSTIUCTIONcoiii ettt e oottt e e e e e e s e s e bbbt r e e e e e e e e e e aaaannbbneeeeeeeas 64
System Call and Breakpoint INSIIUCLIONSuuiiiiiiiiiiiiiei e 64
Trap-on-Condition Instructions Comparing TWO REQISIEISooiiiiiiiiiiiiiiieeeeee e 64
Trap-on-Condition Instructions Comparing an Immediate Valuecccccciiiiiiiiiiiiiis 64
CPU Conditional MOVE INSIIUCHIONScooiiiiiiiiiiiiii ettt e e e e e e et eeeeeeeeas 65
PrefetCh INSITUCTIONSottt e e e e ettt et e e e e e e e et eeeeeeeeas 65
N[O [Y U o £ o] PP TR PP PRTPPPPPP 65
Coprocessor Definition and Use in the MIPS ArchiteCture. ... 66
CPU INStruction FOrMAL FIEIUSeeiiiiiiei e e e e e e e as 67
Parameters of Floating POINt DAta TYPESueiiiiiiiiaiiiiiiiiiie ettt e e a e e e e e e e 71
Value of Single or Double Floating Point DataType ENCOAING........ccuuvuiiiiiiiiieeeiiiiiiiiiieee e 72
Value Supplied When a New Quiet NaN IS Created ...t 74
FIR Register Field DESCHIPLIONScoiiiiiiitiiie ettt e ettt e e e e e e e e bbbt e e e e e aaeeeaaaaan 79
UFR Register Field DESCIIPIONSciiiiiiitiiiee ettt e ettt e e e e e e e e e e eb bbb eeeeeaaeeeaaaanns 81
UNFR Register Field DEeSCIIPLIONSoiiiiiiiiiiiiiie ettt e e e e e e e e et e e e e e e eaeeeaeaann 82
FCSR Register Field DESCIPLIONSoiiiiiiiiiiiiee ettt et e e e e e e e e bbb eeeeaeeeeaaaaans 83
Cause, Enable, and Flag Bit DefiNItiONS............uuuuuiiiiiiiie e e e e e e e e e e e e e e aaaaaaes 85
! FCCR Register Field DESCHIPLIONSuuitiiiiieaeieiiiiiie ettt ettt e e e e e e st e e e e e e e e e e e e annneeeees 86
o]0 aTo [T o JN\Y ToTe (ST D= {1111 o] o 86
FEXR Register Field DeSCIIPLIONS.oiiieitiiiieee ettt e e e e e e e e e e bbb eeeeaaeeeeaan 87
FENR Register Field DESCHPIONScoiiiiiiiiiiie ettt e et e e e e e e eeeeeaee s 88
Default Result for IEEE Exceptions Not Trapped PreCiSely ... 90
FPU Data Transfer INSIIUCTIONS.oiiiiiiiiii ettt e ettt e e e e e e e e e e ae e e e e aaaeeaa s 94
FPU Loads and Stores Using Register+Offset Address Modeccooiiiiiiiiiiiieeiiiiceee e 94
FPU Loads and Using Register+Register AAdreSS MOAE.......cccoviieiiiiiiiiiiiiiee e 94
FPU IEEE ArithmMetiC OPEIaAtIONSccoiiiiiiiititie ettt e e et e e e e e e e e e e e eeraeaeeas 95
FPU Move To and From INSTIUCTIONS ...ttt e e e e e e e eeeeee s 95

MIPS® Architecture For Programmers Volume I-A: Introduction to the MIPS64® Architecture, Revision 5.04

Table 5.19: FPU-Approximate ArithMetiC OPEIAtiIONSciiiiiiiiiiiiiiiiii ittt e e e e e e e e e e e e e e e 96
Table 5.20: FPU Multiply-Accumulate Arithmetic OPErationSeeeiiiiiiiiiiiiiiiiii e 96
Table 5.21: FPU Conversion Operations Using the FCSR Rounding MOde.............ceiiiiiiiiiiiiiiiiiiieeeee e 97
Table 5.22: FPU Conversion Operations Using a Directed Rounding MOGEcceiiiiiiiiiiiiiiiiiiiieiiieeee e 97
Table 5.23: FPU Formatted Operand MOVE INSITUCHIONScooiiiiiiiiiiiiiiii ettt a e e e e 98
Table 5.24: FPU Conditional Move on True/FalSe INSITUCIONS.uiiiiiiiiiiiiiiiii et 98
Table 5.25: FPU Conditional Move on Zero/NONZEero INSITUCHIONS.......cuuiiiiiiiiiiiiiiiiit et 98
Table 5.26: FPU Conditional BranCh INSITUCHIONSeiiiiiiiiiiiiiie ettt a e e e e 99
Table 5.27: Deprecated FPU Conditional Branch Likely INStrUCHONSoooiiiiiiiiiiiie e 99
Table 5.28: CPU Conditional Move on FPU True/False INStrUCHIONScooiiiiiiiiiiiiiieeee et 99
Table 5.29: FPU Operand Format Field (fmt, fmt3) ENCOAINGuuuiiiiiiiiiiiaiiiiiiiiiiieee e 100
Table 5.30: Valid FOrmats for FPU OPEratiONSeeiiiiiiiaiiiiiiiiiiee et e ettt e e e e e e e e e ae e e e e e e e e e e e e aanas 100
Table 5.31: FPU INStruction FOrmMat FIEIAS ..ottt e e e e e e e 104
Table A.1: Symbols Used in the Instruction Encoding TabIesuuuuiiiiiiiiii 108
Table A.2: MIPS64 Encoding of the OpCode FIEld ... 109
Table A.3: MIPS64 SPECIAL Opcode Encoding of FUNCON Field............oooiiiiiiii e 110
Table A.4: MIPS64 REGIMM ENcoding Of It FIEIAcoooiiiiiie et 110
Table A.5: MIPS64 SPECIAL2 Encoding of FUNCLION Fieldovviiiiiiiiiiii e 110
Table A.6: MIPS64 SPECIAL3 Encoding of Function Field for Release 2 of the Architecture.............ccccceeeeeenn... 111
Table A.7: MIPS64 MOVCI ENCOING Of tf Bit.....ccioiii e e e 111
Table A.8: MIPS64 SRL Encoding oOf Shift/ROLALEooiiiiiieee e s 111
Table A.9: MIPS64 SRLV Encoding of Shift/ROtALE..............ooiiiiiie e e 111
Table A.10: MIPS64 DSRLV Encoding of Shift/ROtAtecoviviiiiiiiiiie e s 112
Table A.11: MIPS64 DSRL Encoding of Shift/ROtALE.ooviiiiiiiie e s 112
Table A.12: MIPS64 DSRL32 Encoding of Shift/ROTAE..............ceviiiiiiiiiiieie e 112
Table A.13: MIPS64 BSHFL and DBSHFL Encoding of sa Field..............iiiiiiiiiiiiiee 112
Table A.14: MIPS64 COPO ENcoding Of 1S FIeldcoooiiiiii e 113
Table A.15: MIPS64 COPO Encoding of Function Field When rS=CO ... 113
Table A.16: MIPS64 COP1 ENcoding Of 1S FIeldccooiiiiiiiee et 113
Table A.17: MIPS64 COP1 Encoding of Function Field When IS=S.......uuiiiiiiiiic e 114
Table A.18: MIPS64 COP1 Encoding of Function Field When rS=Duuuiiiiiiiiiii e 114
Table A.19: MIPS64 COP1 Encoding of Function Field When rS=W OF Lccoooviiiiiiiicccce 114
Table A.20: MIPS64 COP1 Encoding of Function Field When rS=PS ... 115
Table A.21: MIPS64 COP1 Encoding of tf Bit When rs=S, D, or PS, Function=MOVCF.............cccccccvnviiieieenennn. 115
Table A.22: MIPS64 COP2 ENcoding Of 1S FIeldccoooiiiiie et 115
Table A.23: MIPS64 COP1X Encoding of FUNCLON FIeldovviiiiiiiiiiiiiie e 115
Table A.24: Floating Point Unit Instruction Format ENCOAINGS.............uuuuiiiiiiiiiieie e 116

MIPS® Architecture For Programmers Volume I-A: Introduction to the MIPS64® Architecture, Revision 5.04 10

Chapter 1

About This Book

The MIPS® Architecture For Programmers Volume I-A: Introduction to the MIPS64® Architecture comes as part of
amulti-volume set.

* VolumeI-A describes conventions used throughout the document set, and provides an introduction to the
Ml Architecture

* Volume I-B describes conventions used throughout the document set, and provides an introduction to the
microM|PS64™ Architecture

* Volumell-A provides detailed descriptions of each instruction in the MIPS64® instruction set
* Volumell-B provides detailed descriptions of each instruction in the microMIPS64™ instruction set

e Volume Il describesthe M| and microMIPS64™ Privileged Resource Architecture which defines and
governs the behavior of the privileged resources included in a MIPS® processor implementation

* VolumeIV-adescribesthe MIPS16e™ A pplication-Specific Extension to the MIPS64® Architecture. Beginning
with Release 3 of the Architecture, microMIPS is the preferred solution for smaller code size.

* Volume IV-b describes the MDM X ™ A pplication-Specific Extension to the Ml Architecture and
microM1PS64™. With Release 5 of the Architecture, MDMX is deprecated. MDM X and MSA can not beimple-
mented at the same time.

* Volume IV-c describes the MIPS-3D® A pplication-Specific Extension to the MIPS® Architecture

* Volume IV-d describes the SmartM1PS®A pplication-Specific Extension to the MIPS32® Architecture and the
microM1PS32™ Architecture and is not applicable to the M1PS64® document set nor the microMIPS64™ docu-
ment set.

* Volume IV-e describes the MIPS® DSP Module to the MIPS® Architecture

* Volume IV-f describesthe MIPS® MT Module to the MIPS® Architecture

* Volume IV-h describes the MIPS® MCU A pplication-Specific Extension to the MIPS® Architecture

* Volume IV-i describesthe MIPS® Virtualization Module to the MIPS® Architecture

e Volume IV-j describes the MIPS® SIMD Architecture Module to the MIPS® Architecture
1.1 Typographical Conventions

This section describes the use of italic, bold and courier fontsin this book.

MIPS® Architecture For Programmers Volume I-A: Introduction to the MIPS64® Architecture, Revision 5.04 11

1.2 UNPREDICTABLE and UNDEFINED

1.1.1 Italic Text
* isused for emphasis
» isused for bits, fields, registers, that are important from a software perspective (for instance, address bits used by
software, and programmabl e fields and registers), and various floating point instruction formats, suchas S, D,
and PS

» isused for the memory access types, such as cached and uncached

1.1.2 Bold Text

* representsaterm that is being defined

» isused for bitsand fields that are important from a hardware perspective (for instance, register bits, which are
not programmable but accessible only to hardware)

» isusedfor ranges of numbers; therangeisindicated by an ellipsis. For instance, 5..1 indicates numbers 5 through
1

* isused to emphasize UNPREDICTABL E and UNDEFINED behavior, as defined below.

1.1.3 Courier Text

courier fixed-width font is used for text that is displayed on the screen, and for examples of code and instruction
pseudocode.

1.2 UNPREDICTABLE and UNDEFINED

Theterms UNPREDI CTABLE and UNDEFINED are used throughout this book to describe the behavior of the
processor in certain cases. UNDEFINED behavior or operations can occur only asthe result of executing instructions
inaprivileged mode (i.e., in Kernel Mode or Debug Mode, or with the CPO usable bit set in the Status register).
Unprivileged software can never cause UNDEFINED behavior or operations. Conversely, both privileged and
unprivileged software can cause UNPREDICTABLE results or operations.

1.2.1 UNPREDICTABLE

UNPREDI CTABLE results may vary from processor implementation to implementation, instruction to instruction,
or as afunction of time on the same implementation or instruction. Software can never depend on results that are
UNPREDICTABLE. UNPREDICTABLE operations may cause aresult to be generated or not. If aresult is gener-
ated, itisUNPREDICTABLE. UNPREDICTABLE operations may cause arbitrary exceptions.

UNPREDI CTABLE results or operations have several implementation restrictions:

* Implementations of operations generating UNPREDI CTABL E results must not depend on any data source
(memory or internal state) which is inaccessible in the current processor mode

* UNPREDICTABLE operations must not read, write, or modify the contents of memory or internal state which
isinaccessible in the current processor mode. For example, UNPREDICTABL E operations executed in user
mode must not access memory or internal state that is only accessible in Kernel Mode or Debug Mode or in
another process

MIPS® Architecture For Programmers Volume I-A: Introduction to the MIPS64® Architecture, Revision 5.04 12

About This Book

* UNPREDICTABLE operations must not halt or hang the processor

1.2.2 UNDEFINED

UNDEFINED operations or behavior may vary from processor implementation to implementation, instruction to
instruction, or as afunction of time on the same implementation or instruction. UNDEFINED operations or behavior
may vary from nothing to creating an environment in which execution can no longer continue. UNDEFINED opera-
tions or behavior may cause data loss.

UNDEFINED operations or behavior has one implementation restriction:
 UNDEFINED operations or behavior must not cause the processor to hang (that is, enter a state from which

there is no exit other than powering down the processor). The assertion of any of the reset signals must restore
the processor to an operationa state

1.2.3 UNSTABLE

UNSTABLE results or values may vary as afunction of time on the same implementation or instruction. Unlike
UNPREDI CTABLE values, software may depend on the fact that a sampling of an UNSTABLE value resultsin a
legal transient value that was correct at some point in time prior to the sampling.

UNSTABL E values have one implementation restriction:

* Implementations of operations generating UNSTABL E results must not depend on any data source (memory or
internal state) which isinaccessible in the current processor mode

1.3 Special Symbols in Pseudocode Notation

In this book, algorithmic descriptions of an operation are described as pseudocode in a high-level language notation
resembling Pascal. Special symbols used in the pseudocode notation are listed in Table 1.1.

Table 1.1 Symbols Used in Instruction Operation Statements

Symbol Meaning
«— Assignment
= # Tests for equality and inequality
[Bit string concatenation
xY A y-bit string formed by y copies of the single-bit value x
b#n A constant value n in base b. For instance 10#100 represents the decimal value 100, 2#100 represents the

binary value 100 (decimal 4), and 16#100 represents the hexadecimal value 100 (decimal 256). If the "b#"
prefix is omitted, the default baseis 10.

Obn A constant value n in base 2. For instance 0b100 represents the binary value 100 (decimal 4).
Ooxn A constant value n in base 16. For instance 0x100 represents the hexadecimal value 100 (decimal 256).
Xy 2 Selection of bitsy through z of bit string x. Little-endian bit notation (rightmost bit is0) isused. If yisless

than z, this expression is an empty (zero length) bit string.

+,— 2's complement or floating point arithmetic: addition, subtraction

13

MIPS® Architecture For Programmers Volume I-A: Introduction to the MIPS64® Architecture, Revision 5.04

1.3 Special Symbols in Pseudocode Notation

Table 1.1 Symbols Used in Instruction Operation Statements (Continued)

Symbol Meaning
* X 2's complement or floating point multiplication (both used for either)
div 2's complement integer division
mod 2's complement modulo
/ Floating point division
< 2's complement less-than comparison
> 2's complement greater-than comparison
< 2's complement less-than or equal comparison
> 2's complement greater-than or equal comparison
nor Bitwise logical NOR
xor Bitwiselogical XOR
and Bitwiselogical AND
or Bitwiselogical OR
not Bitwise inversion
&& Logical (non-Bitwise) AND
<< Logical Shift left (shift in zeros at right-hand-side)
>> Logical Shift right (shift in zeros at left-hand-side)
GPRLEN The length in bits (32 or 64) of the CPU general-purpose registers
GPR[X] CPU general-purpose register x. The content of GPR[0] is always zero. In Release 2 of the Architecture,
GPR[X] is ashort-hand notation for SGPR[SRSCltlcgs, X].
SGPR[s,X] In Release 2 of the Architecture and subsequent rel eases, multiple copies of the CPU general-purpose regis-
ters may be implemented. SGPR[s,X] refersto GPR set s, register x.
FPR[X] Floating Point operand register x
FCC[C(C] Floating Point condition code CC. FCC[0] has the same value as COCJ[1] .
FPR[X] Floating Point (Coprocessor unit 1), general register x
CPR[zx,5] Coprocessor unit z, general register x, select s
CP2CPR[X] Coprocessor unit 2, general register x
CCR[zX] Coprocessor unit z, control register x
CP2CCR[X] Coprocessor unit 2, control register x
COC[Z] Coprocessor unit z condition signal
Xlat[x] Trandation of the MIPS16e GPR number x into the corresponding 32-bit GPR number

BigEndianMem Endian mode as configured at chip reset (O —Little-Endian, 1 — Big-Endian). Specifies the endianness of
the memory interface (see LoadMemory and StoreMemory pseudocode function descriptions), and the endi-
anness of Kernel and Supervisor mode execution.

BigEndianCPU The endianness for load and store instructions (0 — Little-Endian, 1 — Big-Endian). In User mode, this
endianness may be switched by setting the RE bit in the Status register. Thus, BigEndianCPU may be com-
puted as (BigEndianMem XOR ReverseEndian).

ReverseEndian Signal to reverse the endianness of load and store instructions. This feature is available in User mode only,
and isimplemented by setting the RE bit of the Status register. Thus, ReverseEndian may be computed as
(SRRrg and User mode).

MIPS® Architecture For Programmers Volume I-A: Introduction to the MIPS64® Architecture, Revision 5.04

14

About This Book

Table 1.1 Symbols Used in Instruction Operation Statements (Continued)

Symbol Meaning

LLbit Bit of virtual state used to specify operation for instructions that provide atomic read-modify-write. LLbit is
set when alinked load occurs and istested by the conditional store. It is cleared, during other CPU operation,
when a store to the location would no longer be atomic. In particular, it is cleared by exception return instruc-
tions.

(I This occurs as a prefix to Operation description lines and functions as alabel. It indicates the instruction
I+n:, time during which the pseudocode appears to “ execute.” Unless otherwise indicated, all effects of the current
I-n: instruction appear to occur during the instruction time of the current instruction. No label is equivalent to a
timelabel of . Sometimes effects of an instruction appear to occur either earlier or later — that is, during the

instruction time of another instruction. When this happens, the instruction operation is written in sections
|abeled with the instruction time, relative to the current instruction |, in which the effect of that pseudocode
appears to occur. For example, an instruction may have aresult that is not available until after the next
instruction. Such an instruction has the portion of the instruction operation description that writes the result
register in asection labeled 1+1.

The effect of pseudocode statements for the current instruction labelled | +1 appears to occur “at the same
time” asthe effect of pseudocode statements labeled | for the following instruction. Within one pseudocode
sequence, the effects of the statements take place in order. However, between sequences of statements for
different instructions that occur “at the sametime,” there is no defined order. Programs must not depend on a
particular order of evaluation between such sections.

PC The Program Counter value. During the instruction time of an instruction, thisis the address of the instruc-
tion word. The address of theinstruction that occurs during the next instruction timeis determined by assign-
ing avalue to PC during an instruction time. If no value is assigned to PC during an instruction time by any
pseudocode statement, it is automatically incremented by either 2 (in the case of a 16-bit MIPS16e instruc-
tion) or 4 before the next instruction time. A taken branch assigns the target address to the PC during the
instruction time of the instruction in the branch delay slot.

In the MIPS Architecture, the PC value is only visible indirectly, such as when the processor stores the
restart address into a GPR on ajump-and-link or branch-and-link instruction, or into a Coprocessor O register
on an exception. The PC value contains afull 64-bit address all of which are significant during amemory ref-

erence.
ISA Mode In processors that implement the M1PS16e Application Specific Extension or the microMIPS base architec-
tures, the ISA Mode isasingle-bit register that determines in which mode the processor is executing, asfol-
lows:
Encoding Meaning
0 The processor is executing 32-bit MIPS instructions
1 The processor is executing M11PS16e or microMIPS
instructions

In the MIPS Architecture, the ISA Mode value is only visible indirectly, such as when the processor stores a
combined value of the upper bits of PC and the ISA Modeinto a GPR on ajump-and-link or branch-and-link
instruction, or into a Coprocessor 0 register on an exception.

PABITS The number of physical address bitsimplemented is represented by the symbol PABITS. As such, if 36
physical address bits were implemented, the size of the physical address space would be 2PABITS = 236 pyteg,

SEGBITS The number of virtual address bits implemented in a segment of the address space is represented by the sym-
bol SEGBITS. Assuch, if 40 virtual address bits are implemented in a segment, the size of the segment is
2SEGBITS = 240 pyteg

15 MIPS® Architecture For Programmers Volume I-A: Introduction to the MIPS64® Architecture, Revision 5.04

1.4 For More Information

Table 1.1 Symbols Used in Instruction Operation Statements (Continued)

Symbol

Meaning

FP32RegistersMode

Indicates whether the FPU has 32-hit or 64-bit floating point registers (FPRs). In MIPS32 Release 1, the FPU

has 32 32-bit FPRs in which 64-bit data types are stored in even-odd pairs of FPRs. In MIPS64, (and option-
aly in MIPS32 Release2 and MIPSr3) the FPU has 32 64-bit FPRs in which 64-bit data types are stored in

any FPR.

In MIPS32 Release 1 implementations, FP32Register sM odeisawaysa0. MIPS64 implementations have a
compatibility mode in which the processor references the FPRs as if it were a MIPS32 implementation. In
such a case FP32Register M ode is computed from the FR bit in the Status register. If this bitis a0, the pro-
cessor operates asiif it had 32 32-bit FPRs. If thisbit isa 1, the processor operates with 32 64-bit FPRs.

The value of FP32Register sM ode is computed from the FR bit in the Satus register.

InstructionlnBranchDe-

Indicates whether the instruction at the Program Counter address was executed in the delay slot of abranch

tion, argument)

laySlot or jump. This condition reflects the dynamic state of the instruction, not the static state. That is, the valueis
falseif abranch or jump occursto an instruction whose PC immediately follows a branch or jump, but which
is not executed in the delay slot of abranch or jump.
Signal Exception(excep- | Causes an exception to be signaled, using the exception parameter as the type of exception and the argument

parameter as an exception-specific argument). Control does not return from this pseudocode function—the
exception is signaled at the point of the call.

1.4 For More Information

Various MIPS RISC processor manuals and additional information about M1PS products can be found at the MIPS
URL.: http://www mips.com

For comments or questions on the MIPS64® Architecture or this document, send Email to support@mips.com.

MIPS® Architecture For Programmers Volume I-A: Introduction to the MIPS64® Architecture, Revision 5.04

16

Chapter 2

The MIPS Architecture: An Introduction

2.1 MIPS Instruction Set Overview

2.1.1 Historical Perspective

The MIPS® Instruction Set Architecture (ISA) has evolved over time from the original MIPS 1™ |SA, through the
MIPSV™ |SA, to the current MIPS32®, MIPS64® and microMIPS™ Architectures. Asthe ISA evolved, all exten-
sions have been backward compatible with previous versions of the ISA. Inthe MIPS I11™ level of the ISA, 64-bit
integers and addresses were added to the instruction set. The MIPS IV™ and MIPSV ™ levels of the ISA added
improved floating point operations, as well as a set of instructions intended to improve the efficiency of generated
code and of data movement. Because of the strict backward-compatible requirement of the ISA, such changes were
unavailableto 32-bit implementations of the |SA which were, by definition, MIPS 1™ or MIPS 1™ implementations.

While the user-mode | SA was always backward compatible, the privileged environment was allowed to change on a
per-implementation basis. Asaresult, the R3000® privileged environment was different from the R4000® privileged
environment, and subsequent implementations, while similar to the R4000 privileged environment, included subtle
differences. Because the privileged environment was never part of the MIPS ISA, an implementation had the flexibil-
ity to make changes to suit that particular implementation. Unfortunately, this required kernel software changes to
every operating system or kernel environment on which that implementation was intended to run.

Many of the origina MIPS implementations were targeted at computer-like applications such as workstations and
servers. In recent years M1 PS implementations have had significant successin embedded applications. Today, most of
the MIPS parts that are shipped go into some sort of embedded application. Such applications tend to have different
trade-offs than computer-like applications including a focus on cost of implementation, and performance as a func-
tion of cost and power.

The MIPS32 and M1PS64 Architectures are intended to address the need for a high-performance but cost-sensitive
MIPSinstruction set. The MIPS32 Architectureis based on the MIPS 1 1SA, adding selected instructions from MIPS
[, MIPS 1V, and MIPSV to improve the efficiency of generated code and of data movement. The MIPS64 Architec-
tureis based on the MIPS V ISA and is backward compatible with the M1PS32 Architecture. Both the MIPS32 and
MIPS64 Architectures bring the privileged environment into the Architecture definition to address the needs of oper-
ating systems and other kernel software. Both also include provision for adding optional components - Modules of the
base architecture, MIPS Application Specific Extensions (ASEs), User Defined Instructions (UDIs), and custom
coprocessors to address the specific needs of particular markets.

The MIPS32 and M1PS64 Architectures provide a substantial cost/performance advantage over microprocessor
implementations based on traditional architectures. This advantage is aresult of improvements made in several con-
tiguous disciplines: VLSI process technology, CPU organization, system-level architecture, and operating system and
compiler design.

The microM1PS32 and microMIPS64 Architectures deliver the same functionality of MIPS32 and M1PS64 with the
additional benefit of smaller codesizes. The microMIPS architectures are supersets of M1PS32/M1PS64 architectures,
with almost the same sets of 32-bit sized instructions and additional 16-bit instructions to help with codesize. micro-
MIPS is especially compelling for systems in which the cost of memory dominate the entire bill of materials cost.

MIPS® Architecture For Programmers Volume I-A: Introduction to the MIPS64® Architecture, Revision 5.04 17

2.1 MIPS Instruction Set Overview

Unlike the earlier versions of the architectures, microM1PS supplies assembl er-source code compatibility with its pre-
decessorsinstead of binary compatibility.

Figure 2.1 MIPS Architectures

32-bit Address & Data Handling 64-bit Address & Data Handling
MIPS |
MIPS I
 > MIPS Il
MIPS IV
MIPS V
\/ Release 1 *
C MIPS32 Release 1 MIPS64 Release 1)
* Release 2 +
(MIPS32 Release 2 MIPS64 Release 2 >
/\ MIPSr3™ '/\
@PSBZ Release 3 microMIPS32 MIPS64 Release 3 microMIPS64

¢ MIPSr5™ ¢

CMIPSSZ Release 3 microMIPS32 MIPS64 Release 3 microMIPS64)

Multi-Threading Module DSP Module SIMD Module Virtualization Module

2.1.2 Architectural Evolution

The evolution of an architecture is a dynamic process that takes into account both the need to provide a stable plat-
form for implementations, as well as new market and application areas that demand new capabilities. Enhancements
to an architecture are appropriate when they:

» areapplicable to awide market

» provide long-term benefit

e maintain architectural scalability

MIPS® Architecture For Programmers Volume I-A: Introduction to the MIPS64® Architecture, Revision 5.04 18

The MIPS Architecture: An Introduction

19

o arestandardized to prevent fragmentation
* areasuperset of the existing architecture

The MIPS Architecture community constantly evaluates suggestions for architectural changes and enhancements
against these criteria. New releases of the architecture, while infrequent, are made at appropriate points, following
these criteria. At present, there are three releases of the MI1PS Architecture: Release 1 (the original version of the
MIPS64 Architecture) ; Release 2 which was added in 2002 and Release 3 (called MIPSr3™) which was added in
2010.

2.1.2.1 Release 2 of the MIPS64 Architecture

Enhancements included in Release 2 of the MIPS64 Architecture are:

Vectored interrupts: This enhancement provides the ability to vector interrupts directly to a handler for that inter-
rupt. Vectored interrupts are an option in Release 2 implementations and the presence of that option is denoted by
the Config3y/, bit.

Support for an external interrupt controller: This enhancement reconfigures the on-core interrupt logic to take
full advantage of an external interrupt controller. This support is an option in Release 2 implementations and the
presence of that option is denoted by the Config3g ¢ bit.

Programmable exception vector base: This enhancement allows the base address of the exception vectors to be
moved for exceptions that occur when Statusggy, is 0. Doing so allows multi-processor systems to have separate
exception vectors for each processor, and allows any system to place the exception vectors in memory that is
appropriate to the system environment. This enhancement is required in a Release 2 implementation.

Atomic interrupt enable/disable: Two instructions have been added to atomically enable or disable interrupts, and
return the previous value of the Status register. These instructions are required in a Release 2 implementation.

The ability to disable the Count register for highly power-sensitive applications. This enhancement isrequiredin
a Release 2 implementation.

GPR shadow registers: This addition provides the addition of GPR shadow registers and the ability to bind these
registers to a vectored interrupt or exception. Shadow registers are an option in Release 2 implementations and
the presence of that option is denoted by a non-zero value in SRSCtlgs. While shadow registers are most useful
when either vectored interrupts or support for an external interrupt controller is also implemented, neither is
required.

Field, Rotate and Shuffle instructions: These instructions add additional capability in processing bit fieldsin reg-
isters. These instructions are required in a Release 2 implementation.

Explicit hazard management: This enhancement provides a set of instructions to explicitly manage hazards, in
place of the cycle-based SSNOP method of dealing with hazards. These instructions are required in a Release 2
implementation.

Access to anew class of hardware registers and state from an unprivileged mode. This enhancement is required
in a Release 2 implementation.

Coprocessor 0 Register changes: These changes add or modify CPO registers to indicate the existence of new and

optiona state, provide L2 and L 3 cache identification, add trigger bitsto the Watch registers, and add support for
64-bit performance counter count registers. This enhancement is required in a Release 2 implementation.

MIPS® Architecture For Programmers Volume I-A: Introduction to the MIPS64® Architecture, Revision 5.04

2.1 MIPS Instruction Set Overview
» Support for 64-bit coprocessors with 32-bit CPUs: These changes allow a 64-bit coprocessor (including an FPU)
to be attached to a 32-bit CPU. This enhancement is optional in a Release 2 implementation.
* New Support for Virtual and Physical Memory: These changes provide support for a 1K Byte page size, and the

ability to support physical addresses larger than 36 bits. Both changes are optional in Release 2 implementations,
and support is denoted by Config3gp (for 1KB page support) and Config3, pa (for larger physical address sup-

port).
2.1.2.2 Releases 2.5+ of the MIPS64 Architecture
Some optional features were added after Revision 2.5:

* TLB pageslarger than 256MB are supported. This feature allows large regions to be mapped with fewer TLB
entries, especially within devices with very large memory systems.

» Support for aMMU with more than 64 TLB entries. This feature aids in reducing the frequency of TLB misses.

» Scratch registers within CoprocessorO for kernel mode software. This feature aids in quicker exception handling
by not requiring the saving of usermode registers onto the stack before kernelmode software uses those registers.

* A MMU configuration which supports both larger set-associative TLBs and variable page-sizes. Thisfeature aids
in reducing the frequency of TLB misses.

» The CDMM memory scheme for the placement of small 1/0O devices into the physical address space. This
scheme allows for efficient placement of such I/O devices into a small memory region.

* An EIC interrupt mode where the EIC controller supplies a 16-bit interrupt vector. This allows different inter-
rupts to share code.

» The PAUSE instruction to deallocate a (virtual) processor when arbitration for alock doesn't succeed. This
allows for lower power consumption as well as lower snoop traffic when multiple (virtual) processors are arbi-
trating for alock.

* Moreflavors of memory barriers that are available through stypefield of the SYNC instruction. The newer mem-
ory barriers attempt to minimize the amount of pipeline stalls while doing memory synchronization operations.

2.1.2.3 MIPSr3™ Architecture

MIPSr3™ jsafamily of architectures which includes Release 3.0 of the M1PS64 Architecture as well asthe first
release of the microM|PS64 architecture.

Enhancements included in MIPSr3™ Architecture are:
« ThemicroMIPS™ instruction set.
* Thisinstruction set contains both 16-bit and 32-bit sized instructions.
» Thismixed size ISA hasal of the functionality of MI1PS64 while also delivering smaller code sizes.

* microMIPS s assembler source code compatible with MIPS64.

« microMIPS replaces the MIPS16e™ ASE.

MIPS® Architecture For Programmers Volume I-A: Introduction to the MIPS64® Architecture, Revision 5.04 20

The MIPS Architecture: An Introduction

21

* microMIPSisan additional base instruction set architecture that is supported along with MIPS64.

* A device can implement either base ISA or both. The ISA field of Config3 denotes which ISA isimple-
mented.

* A device can implement any other Module/ASE with either base architecture.!
* microMIPS shares the same privileged resource architecture with M1PS64.

» Branch Likely instructions are not supported in the microMIPS hardware architecture. Instead the micro-
MIPS toolchain replaces these instructions with equivalent code sequences.

A more flexible version of the Context Register that can point to any power-of-two sized data structure. This
optional feature is denoted by CTXTC field of Config3.

Additional protection bitsin the TLB entries that allow for non-executable and write-only virtual pages. This
optional feature is denoted by RXI1 field of Config3.

A more programmable virtual address space map without fixed cache-ability and map-ability attributesis intro-
duced as an optional feature. This allows the implementations to decide how large/small uncached/unmapped
segments need to be. These capabilities are implemented through the Segmentation Control registers. This
optional feature is denoted by SC field of Config3.

Along with programmable virtual address map, it is possible to create separate user-mode & kernel-mode views
of segments. This allows alarger kernel virtual address space to be defined. To access both this larger kernel
address space and the overlapping user-space, additional |oad/store instructions are introduced. These new
optional instructions are denoted by EVA field of Config5.

Support for certain |EEE-754-2008 FPU behaviors (as opposed to behaviors of the older IEEE-754-1985 stan-
dard) is now defined. These behaviors are indicated by the Has2008 field of the FIR register within the FPU and

FCSR bits ABS2008 or NAN2008.2

Optional TLB invalidate instructions are introduced. These are necessary with Segmentation Control asit is now
possible to create a virtual address map without unmapped segments.

2.1.2.4 MIPSr5™ Architecture

MIPSI5™ jsafamily of architectures (MIPS32, MIPS64, microM|1PS32 and microM1PS64) and adds these capabili-

The Multi-threading module is now an optional component of all of these base architectures. Previously the M T
ASE was sold as a separate architecture product.

The DSP module is now an optional component of all of these base architectures. Previously the DSP ASE was
sold as a separate architecture product.

The Virtualization module isintroduced for all of these base architectures.

=

Except for MIPS16e.
At thistime the MIPS32 and M1PS64 architectures provide no feature supporting | EEE-754-2008 fused multiply add without
intermediate rounding.

MIPS® Architecture For Programmers Volume I-A: Introduction to the MIPS64® Architecture, Revision 5.04

2.2 Compliance and Subsetting

e TheMIPS SIMD Architecture (MSA) module is introduced for al of these base architectures.

In addition, these changes are made:
» TheMDMX ASE isformally deprecated. The equivalent functionality is covered by the MSA module.

* The64- hit versions of the DSP ASE are formally deprecated. The equivalent functionality is covered by the
MSA module.

* Asof Release 5 of the Architecture, if floating point is implemented then FR=1 is required. |.e. the 64-bit FPU,
with the FR=1 64-bit FPU register model, is required. The FR=0 32-bit FPU register model continues to be

required.®
2.1.3 Architectural Changes Relative to the MIPS | through MIPS V Architectures

In addition to the MIPS Architecture described in this document set, the following changes were made to the architec-
ture relative to the earlier MIPS RISC Architecture Specification, which describesthe MIPS | through MIPSV Archi-
tectures.

« TheMIPSIV ISA added arestriction to the load and store instructions which have natural alignment require-
ments (all but load and store byte and load and store left and right) in which the base register used by the instruc-
tion must also be naturally aligned (the restriction expressed in the MIPS RISC Architecture Specification isthat
the offset be aligned, but the implication is that the base register is also aligned, and this is more consistent with
the indexed |oad/store instructions which have no offset field). The restriction that the base register be naturally-
aligned is eliminated by the M1PS64 Architecture, leaving the restriction that the effective address be naturally-
aligned.

e Early MIPS implementations required two instructions separating a MFLO or MFHI from the next integer multi-
ply or divide operation. This hazard was eliminated in the MIPS |V |SA, athough the MIPS RISC Architecture
Specification does not clearly explain this fact. The M1PS64 Architecture explicitly eliminates this hazard and
requires that the hi and lo registers be fully interlocked in hardware for all integer multiply and divide instruc-
tions (including, but not limited to, the MADD, MADDU, MSUB, MSUBU, and MUL instructions introduced in
this specification).

e The Implementation and Programming Notes included in the instruction descriptions for the madd, maddu,
msub, msubu, and mul instructions should also be applied to al integer multiply and divide instructions in the
MIPS RISC Architecture Specification.

2.2 Compliance and Subsetting

To be compliant with the M1PS64 Architecture, designs must implement a set of required features, as described in
this document set. To alow flexibility in implementations, the M1PS64 Architecture does provide subsetting rules.
Animplementation that follows these rules is compliant with the M1PS64 Architecture aslong asit adheres strictly to
therules, and fully implements the remaining instructions. Supersetting of the M1PS64 Architectureis only allowed
by adding functions to the SPECIAL2 major opcode, by adding control for co-processors viathe COP2, LWC2,
SWC2, LDC2, and/or SDC2, or viathe addition of approved Application Specific Extensions.

3. Reease 5 of the Architecture makes the FPU requirements consistent between MIPS32 and MIPS64. Prior to Release 5
MI1PS64 requires FR=0 and FR=1, whereas MIPS32 requires FR=0 but FR=1 is optional. Release 5 requires FR=0 and FR=1
in al implementations of floating point, although floating point overall remains optional.

MIPS® Architecture For Programmers Volume I-A: Introduction to the MIPS64® Architecture, Revision 5.04 22

The MIPS Architecture: An Introduction

23

Note: The use of COP3 as a customizable coprocessor has been removed in the Release 2 of the M1PS64 architecture.
The use of the COP3 is now reserved for the future extension of the architecture.

The instruction set subsetting rules are as follows:

All non-privileged (do not need access to Coprocessor 0) CPU (non-FPU) instructions must be implemented - no
subsetting of these are allowed.

The FPU and related support instructions, including the MOVF and MOVT CPU instructions, may be omitted.
Software may determine if an FPU isimplemented by checking the state of the FP bit in the Configl CPO regis-
ter. If the FPU isimplemented, the paired single (PS) format is optional. Software may determine which FPU
data types are implemented by checking the appropriate bit in the FIR CP1 register. The following allowable
FPU subsets are compliant with the M1PS64 architecture:

* NoFPU

 FPUwith S, D, W, and L formatsand all supporting instructions

 FPUwith S D, PS, W, and L formats and all supporting instructions

» Asof Release 5 of the Architecture, if floating point is implemented then FR=1 is required. |.e. the 64-bit
FPU, with the FR=1 64-bit FPU register model, is required. The FR=0 32-bit FPU register model continues
to be required.

Coprocessor 2 is optional and may be omitted. Software may determine if Coprocessor 2 isimplemented by

checking the state of the C2 bit in the Configl CPO register. If Coprocessor 2 isimplemented, the Coprocessor 2

interface instructions (BC2, CFC2, COP2, CTC2, DMFC2, DMTC2, LDC2, LWC2, MFC2, MTC2, SDC2, and

SWC2) may be omitted on an instruction-by-instruction basis.

Implementation of the full 64-bit address space is optional. The processor may implement 64-bit data and opera-

tionswith a 32-bit only address space. In this case, the MMU acts asif 64-bit addressing is always disabled. Soft-

ware may determine if the processor implements a 32-bit or 64-bit address space by checking the AT field in the

Config CPO register.

The EVA load/store instructions (LWE, LHE, LBE, LBUE, LHUE, SWE, SHE, SBE) are optional.

Supervisor Mode is optional. If Supervisor Mode is not implemented, bit 3 of the Status register must be
ignored on write and read as zero.

The standard TLB-based memory management unit may be replaced with:

* asimpler MMU (e.g., aFixed Mapping MMU or aBlock Address Translation MMU or a Base-Bounds
MMU).

e TheDua TLB MMU - (e.g. FTLB and VTLB MMU described in the Alternative MMU Organizations
Appendix of Volume I11)

If thisis done, the rest of the interface to the Privileged Resource Architecture must be preserved. Software may
determine the type of the MMU by checking the MT field in the Config CPO register.

The Caches are optional. The Configlp, and Configl,, fields denote whether the first level caches are present
or not.

MIPS® Architecture For Programmers Volume I-A: Introduction to the MIPS64® Architecture, Revision 5.04

2.2 Compliance and Subsetting

» ThePrivileged Resource Architecture includes several implementation options and may be subsetted in accor-

dance with those options. An incomplete list of these options include:

e Interrupt Modes

e Shadow Register Sets

e Common Device Memory Map

» Parity/ECC support

e UserLocal register

» ContextConfig register

e PageGrain register

e Configl-4 registers

» Performance Counter, WatchPoint and Trace Registers

» Cache control/diagnostic registers

Kernelmode scratch registers

* Instruction, CPO Register, and CP1 Control Register fields that are marked “Reserved” or shown as“0” in the
description of that field are reserved for future use by the architecture and are not available to implementations.
Implementations may only use those fields that are explicitly reserved for implementation dependent use.

» Supported Modules/ASEs are optional and may be subsetted out. If most cases, software may determineif asup-
ported Module/A SE isimplemented by checking the appropriate bit in the Configl or Config3 or Config4 CPO
register. If they areimplemented, they must implement the entire | SA applicable to the component, or implement
subsets that are approved by the Module/ASE specifications.

» EJTAG isoptional and may be subsetted out. If it isimplemented, it must implement only those subsets that are
approved by the EJTAG specification.

» If any instruction is subsetted out based on the rules above, an attempt to execute that instruction must cause the
appropriate exception (typically Reserved Instruction or Coprocessor Unusable).

* InMIPSr3 (aso called Release 3), there are two architecture branches (M1PS32/64 and microM1PS32/64). A sin-
gle deviceis alowed to implement both architecture branches. The Privileged Resource Architecture (COPO)
registers do not mode-switch in width (32-bit vs. 64-bit). For thisreason, if adeviceimplements both architecture
branches, the address/data widths must be consistent. If a device implements MIPS64 and also implements
microMIPS, it must implement microM1PS64 not just microMIPS32. Simiarly, If adevice implements
microM1PS64 and also implements MIPS32/64, it must implement MIPS64 not just M1PS32.

* If both of the architecture branches are implemented (M1PS32/64 and microMIPS32/64) or if MIPS16eisimple-
mented then the JAL X instructions are required. If only one branch of the architecture family and M1PS16eis not
implemented then the JAL X instruction is not implemented. That is, the JALX instruction is required if and only
if when ISA mode-switching is possible.

MIPS® Architecture For Programmers Volume I-A: Introduction to the MIPS64® Architecture, Revision 5.04 24

The MIPS Architecture: An Introduction

* MIPS'5™ (also called Release 5) includes anumber of features. Some are optional; some arerequired. Release 5
features, whether optional or required, must be consistent. If any feature that isintroduced by Release 5isimple-
mented, i.e. which is described as part of Release 5 and not any earlier release, then al other features must be
implemented in a manner consistent with Release 5. For example: the VZ and M SA features are introduced by
Release 5 but are optional, whereas the FR=1 64-bit FPU register model was optional when introduced earlier,
but is now required by Release 5 if any FPU isimplemented. If any or all of VZ or MSA are implemented, then
Release 5 isimplied, and then if an FPU isimplemented, it must implement the FR=1 64-bit FPU register model.

2.3 Components of the MIPS Architecture

2.3.1 MIPS Instruction Set Architecture (ISA)

The MIPS32 and MIPS64 I nstruction Set Architectures define acompatible family of instructions dealing with 32-bit
data and 64-bit data (respectively) within the framework of the overall MIPS Architectures. Included in the ISA are
all instructions, both privileged and unprivileged, by which the programmer interfaces with the processor. The ISA
guarantees object code compatibility for unprivileged and, often, privileged programs executing on any M1PS32 or
MIPS64 processor; all instructions in the MIPS64 | SA are backward compatible with those instructionsin the
MIPS32 ISA. Using conditional compilation or assembly language macros, it is often possible to write privileged
programs that run on both MIPS32 and M1PS64 implementations.

2.3.2 MIPS Privileged Resource Architecture (PRA)

The MIPS32 and M1PS64 Privileged Resource Architecture defines a set of environments and capabilities on which
the ISA operates. The effects of some components of the PRA are visible to unprivileged programs; for instance, the
virtual memory layout. Many other components are visible only to privileged programs and the operating system. The
PRA provides the mechanisms necessary to manage the resources of the processor: virtual memory, caches, excep-
tions, user contexts, etc.

2.3.3 MIPS Modules and Application Specific Extensions (ASES)

The MIPS32 and MIPS64 Architectures provide support for optional components - known as either Modules or appli-
cation specific extensions. As optional extensions to the base architecture, the Modules/ASEs do not burden every
implementation of the architecture with instructions or capability that are not needed in a particular market. An ASE/
Module can be used with the appropriate |SA and PRA to meet the needs of a specific application or an entire class of
applications.

2.3.4 MIPS User Defined Instructions (UDIs)

In addition to support for Modules/ASEs as described above, the MIPS32 and M1PS64 Architectures define specific
instructions for the use of each implementation. The Special 2 instruction function fields and Coprocessor 2 are
reserved for capability defined by each implementation.

2.4 Architecture Versus Implementation

25

When describing the characteristics of MIPS processors, architecture must be distinguished from the hardware imple-
mentation of that architecture.

» Architecturerefersto the instruction set, registers and other state, the exception model, memory management,
virtual and physical address layout, and other features that all hardware executes.

MIPS® Architecture For Programmers Volume I-A: Introduction to the MIPS64® Architecture, Revision 5.04

2.5 Relationship between the MIPSr3 Architectures

* Implementation refers to the way in which specific processors apply the architecture.
Here are two examples:

1. A floating point unit (FPU) is an optional part of the MIPS64 Architecture. A compatible implementation of the
FPU may have different pipeline lengths, different hardware algorithms for performing multiplication or divi-
sion, etc.

2. Most MIPS processors have caches; however, these caches are not implemented in the same manner in all MIPS
processors. Some processors implement physically-indexed, physically tagged caches. Other implement virtu-
ally-indexed, physically-tagged caches. Still other processor implement more than one level of cache.

The MI1PS64 architecture is decoupled from specific hardware implementations, |eaving microprocessor designers
free to create their own hardware designs within the framework of the architectural definition.

2.5 Relationship between the MIPSr3 Architectures

The MIPS Architectures evolved as acompromise between software and hardware resources. The MIPS has afamily
of related architectures. Within each “branch of the family”, the architecture guarantees object-code compatibility for
User-Mode programs executed on any MIPS processor.

MIPS32 and MIPS64 form one branch of the architecture family. In User Mode MIPS64 processors are backward-
compatible with their MI1PS32 predecessors. As such, the MIPS32 Architecture is a strict subset of the MIPS64
Architecture.

Similarly, microMIPS32 and microMIPS64 form another branch of the architecture family. In User Mode
microM|PS64 processors are backward-compatible with their microM | PS predecessors. As such, the microMIPS
Architecture isastrict subset of the MIPS64 Architecture.

The relationship between the binary representations of the architecturesis shown in Figure 2.2.

MIPS® Architecture For Programmers Volume I-A: Introduction to the MIPS64® Architecture, Revision 5.04 26

The MIPS Architecture: An Introduction

Figure 2.2 Relationship of the Binary Representations of MIPSr3 Architectures

microMIPS32/64 is not binary compatible with MIPS32/64

r’d S

microMIPS64 is binary compatible with microMIPS32 MIPS64 is binary compatible with MIPS32

instructions
dealing
with

64-bit

data

microMIPS32 is proper subset of microMIPS64 MIPS32 is proper subset of MIPS64

As of 2010, there are two branches of the architecture family - the MIPS32/64 branch and the microMIPS32/64
branch. For these two branches, some levels of compatibility are available:

1. The microMIPS32/64 branch supplies a superset of the functionality that is available from the MIPS32/64
branch. The additional functionality that the microMIPS branch delivers is smaller code size.

2. TItis allowed for implementations to implement both branches of the architecture family for compatibility rea-
sons. For such implementations, the architectures define methods of switching from one instruction set to the
other. This allows one binary program to use both instruction sets or call a library that is using the other instruc-
tion set.

3. At the assembler source code level, the two architecture branches are fully compatible. That is, all of the
MIPS32/64 assembler instruction mnemonics and directives are fully usable and understood by the
microMIPS32/64 toolchains.

The relationships between the assembler source-code representations of the architectures is shown in Figure 2.3.

27 MIPS® Architecture For Programmers Volume I-A: Introduction to the MIPS64® Architecture, Revision 5.04

2.6 Pipeline Architecture

Figure 2.3 Relationships of the Assembler Source Code Representations of the MIPSr3 Architectures

instructions
dealing
with

64-bit

data

microMIPS32

MIPS32

Note 1 - microMIPS toolchain
emulates branch-likely instrs

W_J
16-bit & 32-bit instructions
for smaller code size

2.6 Pipeline Architecture

This section describes the basic pipeline architecture, along with two types of improvements: superpipelines and
superscalar pipelines. (Pipelining and multiple issuing are not defined by the ISA, but are implementation dependent.)

2.6.1 Pipeline Stages and Execution Rates

MIPS processors all use some variation of a pipeline in their architecture. A pipeline is divided into the following dis-
crete parts, or stages, shown in Figure 2.4:

* Fetch
* Arithmetic operation
* Memory access

e Write back

MIPS® Architecture For Programmers Volume [-A: Introduction to the MIPS64® Architecture, Revision 5.04 28

The MIPS Architecture: An Introduction

Figure 2.4 One-Deep Single-Completion Instruction Pipeline

Cycle 5 Cycle 6 Cycle 7 Cycle 8
__ Instruction completion

Cycle 1 Cycle 2 Cycle 3

Instruction 1

Fetch ALU Memory

Stage 1 Stage 2 Stage 3 Stage 4 Cycle 3
—~
Execution Rate Instruction 2 Fetch ALU Memory Write

Stage 1 Stage 2 Stage 3 Stage 4

In the example shown in Figure 2.4, each stage takes one processor clock cycle to complete. Thus it takes four clock
cycles (ignoring delays or stalls) for the instruction to complete. In this example, the execution rate of the pipeline is
one instruction every four clock cycles. Conversely, because only a single execution can be fetched before comple-
tion, only one stage is active at any time.

2.6.2 Parallel Pipeline

Figure 2.5 illustrates a remedy for the latency (the time it takes to execute an instruction) inherent in the pipeline
shown in Figure 2.4.

Instead of waiting for an instruction to be completed before the next instruction can be fetched (four clock cycles), a
new instruction is fetched each clock cycle. There are four stages to the pipeline so the four instructions can be exe-
cuted simultaneously, one at each stage of the pipeline. It still takes four clock cycles for the first instruction to be
completed; however, in this theoretical example, a new instruction is completed every clock cycle thereafter. Instruc-
tions in Figure 2.5 are executed at a rate four times that of the pipeline shown in Figure 2.4.

Figure 2.5 Four-Deep Single-Completion Pipeline
Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6 Cycle 7

Fetch ALU Memory Write

Instruction 1

Fetch ALU Memory Write

nstruction

Fetch ALU Memory Write

Instruction 3

Fetch ALU Memory Write

Instruction 4

2.6.3 Superpipeline

Figure 2.6 shows a superpipelined architecture. Each stage is designed to take only a fraction of an external clock
cycle—in this case, half a clock. Effectively, each stage is divided into more than one substage. Therefore more than
one instruction can be completed each cycle.

29 MIPS® Architecture For Programmers Volume I-A: Introduction to the MIPS64® Architecture, Revision 5.04

2.7 Load/Store Architecture

Figure 2.6 Four-Deep Superpipeline
Cycle1 Cycle2 Cycle3 Cycle4 Cycle5 Cycle6 Cycle7 Cycle8

Clock
Phase

|Fetch| ALU | Mem |Write|
[Fetch] ALU [Mem [Wite]

[Fetch] ALU | Mem] W]

Fetch] ALU | Mem | Wite]

|Fetch| ALU | Mem | wmeI

2.6.4 Superscalar Pipeline

A superscalar architecture also allows more than one instruction to be completed each clock cycle. Figure 2.7 shows
a four-way, five-stage superscalar pipeline.

Figure 2.7 Four-Way Superscalar Pipeline

Instruction 1 [—IF || ID " 1S || EX || WB I
Instruction 2| IF || ID || IS || EX || wB I
Instruction 3[~IF || ID || 1S || EX || WB I
Instruction 4 | IF || ID || IS || EX || WB I
Instruction 5 [~1F || D || 1S || EX || WB I
Instruction 6| |F || ID || IS || EX || WB l
Instruction 7| |F || ID || IS || EX || WB |
Instruction 8 [IF || ID || 1S || EX || WB l

T~

Five-stage

> Four-way

IF = instruction fetch

ID = instruction decode and dependency
IS = instruction issue

EX = execution

WB = write back

2.7 Load/Store Architecture

Generally, it takes longer to perform operations in memory than it does to perform them in on-chip registers. This is
because of the difference in time it takes to access a register (fast) and main memory (slower).

To eliminate the longer access time, or latency, of in-memory operations, MIPS processors use a load/store design.

The processor has many registers on chip, and all operations are performed on operands held in these processor regis-
ters. Main memory is accessed only through load and store instructions. This has several benefits:

MIPS® Architecture For Programmers Volume I-A: Introduction to the MIPS64® Architecture, Revision 5.04 30

The MIPS Architecture: An Introduction

* Reducing the number of memory accesses, easing memory bandwidth requirements
» Simplifying the instruction set

* Making it easier for compilersto optimize register allocation
2.8 Programming Model

This section describes the following aspects of the programming model:
» CPU Data Formats

e Coprocessors (CP0O-CP3)

» CPU Registers

* FPU Data Formats

» Byte Ordering and Endianness

* Memory Access Types

2.8.1 CPU Data Formats

The CPU defines the following data formats:
e Bit(b)
* Byte (8 hits, B)
» Halfword (16 bits, H)
* Word (32 hits, W)
« Doubleword (64 bits, D)*
2.8.2 FPU Data Formats
The FPU defines the following data formats:
» 32-bit single-precision floating point (.fmt type S
» 32-bit single-precision floating point paired-single (fmt type PS)4
* 64-bit double-precision floating point (fmt type D)

» 32-bit Word fixed point (fmt type W)

4. The CPU Doubleword and FPU floating point paired-single and Long fixed point data formats are available in aRelease 1
implementation of the MIPS64 Architecture, or in a Release 2 (or subsequent rel eases) implementation that includes a 64-bit
floating point unit, whether MIPS32, MIPS64, microM|1PS32, or microM|PS64.

31 MIPS® Architecture For Programmers Volume I-A: Introduction to the MIPS64® Architecture, Revision 5.04

2.8 Programming Model

64-bit Long fixed point (fmt type L)*

2.8.3 Coprocessors (CP0-CP3)

The MIPS Architecture defines four coprocessors (designated CPO, CP1, CP2, and CP3):

Coprocessor 0 (CPQ) isincorporated on the CPU chip and supports the virtual memory system and exception
handling. CPO is also referred to as the System Control Coprocessor.

Coprocessor 1 (CP1) isreserved for the floating point coprocessor, the FPU.
Coprocessor 2 (CP2) isavailable for specific implementations.

Coprocessor 3 (CP3) isreserved for the floating point unit in a Release 1 implementation of the MIPS64 Archi-
tecture, and on all Release 2 (and subsequent releases) implementations of the Architecture.

CPO trandlates virtual addresses into physical addresses, manages exceptions, and handles switches between kernel,
supervisor, and user states. CP0 also controls the cache subsystem, as well as providing diagnostic control and error
recovery facilities. The architectural features of CPO are defined in Volume 1.

2.8.4 CPU Registers

The M1PS64 Architecture defines the following CPU registers:

32 64-hit general purpose registers (GPRs)

apair of special-purpose registers to hold the results of integer multiply, divide, and multiply-accumulate opera-
tions (HI and LO)

a specia-purpose program counter (PC), which is affected only indirectly by certain instructions - it is not an
architecturally-visible register.

A MIPS64 processor always produces a 64-bit result, even for those instructions which are architecturally defined to
operate on 32 bits. Such instructionstypically sign-extend their 32-bit result into 64 bits. In so doing, 32-bit programs
work as expected, even though the registers are actually 64 bits wide rather than 32.

2.8.4.1 CPU General-Purpose Registers

Two of the CPU general-purpose registers have assigned functions:

r0 is hard-wired to avalue of zero, and can be used as the target register for any instruction whose result isto be
discarded. r0 can also be used as a source when a zero value is needed.

r31 isthe destination register used by JAL, BLTZAL, BLTZALL, BGEZAL, and BGEZALL without being
explicitly specified in the instruction word. Otherwise r31 is used as a hormal register.

The remaining registers are available for general-purpose use.

2.8.4.2 CPU Special-Purpose Registers

The CPU contains three special -purpose registers:

MIPS® Architecture For Programmers Volume I-A: Introduction to the MIPS64® Architecture, Revision 5.04 32

The MIPS Architecture: An Introduction

e PC—Program Counter register
* HI—Multiply and Divide register higher result
* LO—Multiply and Divide register lower result
* During amultiply operation, the HI and LO registers store the product of integer multiply.

* During amultiply-add or multiply-subtract operation, the HI and LO registers store the result of the integer
multiply-add or multiply-subtract.

* During adivision, the HI and LO registers store the quotient (in LO) and remainder (in HI) of integer divide.
* During a multiply-accumulate, the HI and LO registers store the accumulated result of the operation.

Figure 2.8 shows the layout of the CPU registers.

33 MIPS® Architecture For Programmers Volume I-A: Introduction to the MIPS64® Architecture, Revision 5.04

2.8 Programming Model

Figure 2.8 CPU Registers

63 32 31

0 63 32 31

r0 (hardwired to zero)

HI

rl

LO

r2

r3

r4

r5

ré

r7

r8

r9

r10

ril

ri2

ri3

ri4

ri5

rl6

rl7z

rl8

ri9

r20

r21

r22

r23

r24

r25

r26

r27

r28

r29

r30

63 32 31

r3l

PC

General Purpose Registers

Specia Purpose Registers

2.8.5 FPU Registers

The M1PS64 Architecture defines the following FPU registers:

MIPS® Architecture For Programmers Volume I-A: Introduction to the MIPS64® Architecture, Revision 5.04

34

The MIPS Architecture: An Introduction

35

» 32floating point registers (FPRs). These registers are 32 bitswide in a 32-bit FPU and 64 bits wide on a 64-bit
FPU.

» Five FPU control registers are used to identify and control the FPU.
» Eight floating point condition codes that are part of the FCSR register

In Release 1 of the Architecture, 64-bit floating point units were supported only by implementations of the M1PS64
Architecture. Similarly, implementations of M1PS32 of the Architecture only supported 32-bit floating point units. In
Release 2 of the Architecture and subsequent releases, a 64-bit floating point unit is optional on implementations of
both the MIPS32 and M1PS64 Architectures. As of Release 5 of the Architecture, if floating point isimplemented
then FR=1 isrequired. |.e. the 64-bit FPU, with the FR=1 64-bit FPU register model, is required. The FR=0 32-bit
FPU register model continues to be required.

A 32-bit floating point unit contains 32 32-hit FPRs, each of which is capable of storing a 32-bit data type. Double-
precision (type D) data types are stored in even-odd pairs of FPRs, and the long-integer (type L) and paired single
(type PS) data types are not supported. Figure 2.9 shows the layout of these registers.

A 64-hit floating point unit contains 32 64-bit FPRs, each of which is capable of storing any data type. For compati-
bility with 32-hit FPUs, the FR bit in the CPO Status register is used by a MIPS64 Release 1, or any Release 2 (or
subsequent releases) processor that supports a 64-bit FPU to configure the FPU in amode in which the FPRs are
treated as 32 32-bit registers, each of which is capable of storing only 32-bit data types. In this mode, the double-pre-
cision floating point (type D) datatype is stored in even-odd pairs of FPRs, and the long-integer (type L) and paired
single (type PS) data types are not supported.

Figure 2.10 shows the layout of the FPU Registers when the FR bit in the CPO Status register is 1; Figure 2.11 shows
the layout of the FPU Registers when the FR bit in the CPO Status register is 0.

MIPS® Architecture For Programmers Volume I-A: Introduction to the MIPS64® Architecture, Revision 5.04

Figure 2.9 FPU Registers for a 32-bit FPU

31

fo

f1

f2

3

f4

5

6

f7

8

f9

f10

f11

f12

f13

f14

f15

f16

f17

f18

f19

f20

f21

f22

f23

f24

25

26

31

f27

FIR

f28

FCCR

f29

FEXR

f30

FENR

f31

FCSR

Genera Purpose Registers

Specia Purpose Registers

2.8 Programming Model

MIPS® Architecture For Programmers Volume I-A: Introduction to the MIPS64® Architecture, Revision 5.04 36

The MIPS Architecture: An Introduction

37

Figure 2.10 FPU Registers for a 64-bit FPU if Statusgg is 1

63

32 31

fo

f1

f2

3

f4

5

6

f7

8

f9

f10

f11

f12

f13

f14

f15

f16

f17

f18

f19

f20

f21

f22

f23

f24

25

26

31

f27

FIR

f28

FCCR

f29

FEXR

f30

FENR

f31

FCSR

Genera Purpose Registers

Specia Purpose Registers

MIPS® Architecture For Programmers Volume I-A: Introduction to the MIPS64® Architecture, Revision 5.04

2.8 Programming Model

Figure 2.11 FPU Registers for a 64-bit FPU if Statusgg is O

63

32 31

UNPREDICTABLE

fo

f1

f2

3

f4

5

6

f7

8

f9

f10

f11

f12

f13

f14

f15

f16

f17

f18

f19

f20

f21

f22

23

f24

25

26

31

f27

FCRO

f28

FCR25

29

FCR26

30

FCR28

31

FCSR

Genera Purpose Registers

Specia Purpose Registers

2.8.6 Byte Ordering and Endianness

Bytes within larger CPU data formats—halfword, word, and doubleword—can be configured in either big-endian or

little-endian order, as described in the following subsections:

MIPS® Architecture For Programmers Volume I-A: Introduction to the MIPS64® Architecture, Revision 5.04

38

The MIPS Architecture: An Introduction

* Big-Endian Order
» Little-Endian Order

« MIPS Bit Endianness

Endianness defines the location of byte 0 within a larger data structure (in this book, bits are always numbered with
0 on the right). Figures 2.12 and 2.13 show the ordering of bytes within words and the ordering of words within mul-
tiple-word structures for both big-endian and little-endian configurations.

2.8.6.1 Big-Endian Order

When configured in big-endian order, byte 0 is the most-significant (left-hand) byte. Figure 2.12 shows this configu-
ration.

Figure 2.12 Big-Endian Byte Ordering

Higher Word i

Address Address| 31 24 23 16 1|5 8 7 0]
12 | 12 | 13 | 14 | 15 |
s [8 | 9o [1w | 11 |
4 | L s | & | 7 |
Lower o [o | 1 J 2 [3 |]> 1 word = 4 bytes

Address

2.8.6.2 Little-Endian Order

When configured in little-endian order, byte 0 is always the least-significant (right-hand) byte. Figure 2.13 shows
this configuration.

Figure 2.13 Little-Endian Byte Ordering

Higher Word Bif #
Address Address | 31 24 23 16 15 8 7 0 |
12 15 14 | 13 | 12 |
11 0 [9 | 8 |
4 7 6 | 5 | 4 |
over o [] 2 | 1 | o]

Address

2.8.6.3 MIPS Bit Endianness

In this book, bit 0 is always the least-significant (right-hand) bit. Although no instructions explicitly designate bit
positions within words, MIPS bit designations are always little-endian.

2.14 shows big-endian and 2.15 shows little-endian byte ordering in doublewords.

39 MIPS® Architecture For Programmers Volume I-A: Introduction to the MIPS64® Architecture, Revision 5.04

2.8 Programming Model

Figure 2.14 Big-Endian Data in Doubleword Format

Most-significant byte Least-significant byte
Word /

1
Bit # 63\56 55 48 47 4039 32131 2423 1615 87 ,/ol
\
Bye [O | 1][2 |[3 | 4 || 5 |[6 | 7|

T Zr
Halfword Byte

|
Bit# |7 6 5 4 3 2 1 0]

HRREEE

Bits in a byte

Figure 2.15 Little-Endian Data in Doubleword Format

Word
1

Bit# 63 \56 55 4847 4039 32131 2423 1615 87 /ol
7
Bye# | 7 || 6 || 5 || 4 J 3] 2 | 1 | 0]

Halfword . Byte ﬁ

|
Bit# 17 6 54 32 1 0l

OOt

Bits in a byte

Most-significant byte Least-sig?ﬂcant byte

2.8.7 Memory Alignment

Prior to Release 5 the MIPS architectures required “natural”alignment of memory operands for most memory opera-
tions, as described in section 2.8.7.1 “Addressing Alignment Constraints” below. Instructions such as LWL and
LWR, described in section 2.8.7.2 “Unaligned Loads and Stores”, were provided so that unaligned accesses could be
performed via instruction sequences.

In Release 5 of the Architecture the MSA (MIPS SIMD Architecture) supports 128 bit memory accesses, and does

NOT require these to be naturally aligned. The behavior, semantics, and architecture specifications of such mis-
aligned accesses are described in an appendix to Volume II of the architecture specification.

2.8.7.1 Addressing Alignment Constraints

The CPU uses byte addressing for halfword, word, and doubleword accesses with the following alignment con-
straints:

* Halfword accesses must be aligned on an even byte boundary (0, 2, 4...).
* Word accesses must be aligned on a byte boundary divisible by four (0, 4, 8...).

* Doubleword accesses must be aligned on a byte boundary divisible by eight (0, 8. 16...).

MIPS® Architecture For Programmers Volume I-A: Introduction to the MIPS64® Architecture, Revision 5.04 40

The MIPS Architecture: An Introduction

2.8.7.2 Unaligned Loads and Stores

The following instructions load and store words that are not aligned on word (W) or doubleword (D) boundaries:

Table 2.1 Unaligned Load and Store Instructions

Alignment Instructions Instruction Set
Word LWL, LWR, SWL, SWR MIPS32 ISA
Doubleword LDL, LDR, SDL, SDR MIPS64 ISA

2.16 show a big-endian access of a misaligned word that has byte address 3, and 2.17 shows a little-endian access of

a misaligned word that has byte address 1.3

Figure 2.16 Big-Endian Misaligned Word Addressing

Higher .

Address B'It#
31 2423 16 15 87 ol
L 4 || 5 | & | |
| [| R

Lower

Address

Figure 2.17 Little-Endian Misaligned Word Addressing

Higher

Address Bif#
131 2423 16 15 87 ol
| [| | 4
L3 L2 J 1 | |

Lower

Address

2.8.8 Memory Access Types

MIPS systems provide several memory access types. These are characteristic ways to use physical memory and
caches to perform a memory access.

The memory access type is identified by the Cacheability and Coherency Attribute (CCA) bits in the TLB entry for
each mapped virtual page. The access type used for a location is associated with the virtual address, not the physical
address or the instruction making the reference. Memory access types are available for both uniprocessor and multi-
processor (MP) implementations.

All implementations must provide the following memory access types:

¢ Uncached

5. These two figures show left-side misalignment.

41 MIPS® Architecture For Programmers Volume I-A: Introduction to the MIPS64® Architecture, Revision 5.04

2.8 Programming Model

» Cached

Implementations may include this optional memory access type:

* Uncached Accelerated

These memory access types are described in the following sections:
e Uncached Memory Access

* Cached Memory Access

e Uncached Accelerated Memory Access

2.8.8.1 Uncached Memory Access

In an uncached access, physical memory resolves the access. Each reference causes aread or write to physical mem-
ory. Caches are neither examined nor modified.

2.8.8.2 Cached Memory Access

In a cached access, physical memory and all cachesin the system containing a copy of the physical location are used
to resolve the access. A copy of alocation is coherent if the copy was placed in the cache by a cached coherent
access; acopy of alocation is noncoherent if the copy was placed in the cache by a cached noncoherent access.
(Coherency is dictated by the system architecture, not the processor implementation.)

Caches containing a coherent copy of the location are examined and/or modified to keep the contents of the location
coherent. It is not possible to predict whether caches holding a noncoherent copy of the location will be examined
and/or modified during a cached coherent access.

Prefetches for data and instructions are allowed. Speculative prefetching of datathat may never be used or instruc-
tions which may never be executed are allowed.

2.8.8.3 Uncached Accelerated Memory Access
Previous to the 3.5 version of this specification, the behavior of Uncached Accelerated Memory Access type was not
architecturally defined, but rather was implementati on-specific behavior. In the 3.5 version of this specification, the
behavior of the Uncached Accelerated is now architecturally defined. This access typeis optional.

In an uncached accelerated access, physical memory resolves the access. Each reference causes aread or write to
physical memory. Caches are neither examined nor modified.

In uncached access, each store instruction causes a separate, unique reguest to physical memory.

In MIPS CPUs, writes are allowed to be buffered within the CPU. Write buffers are usually of cache-linein size. Usu-
aly, if there is sufficient data within the write buffer, the datais sent in one burst transaction for higher efficiency.

In uncached accel erated access, the data from multiple store instructions can be sent together to the physical memory
in one burst transaction. Thisis achieved by using write buffersto gather the data from multiple store instructions
before sending out the memory request.

Data from store instructions using uncached accel erated access are kept in the buffer under these rules:

MIPS® Architecture For Programmers Volume I-A: Introduction to the MIPS64® Architecture, Revision 5.04 42

The MIPS Architecture: An Introduction

43

Buffering can start on any byte address.
Datais placed into the buffer obeying full byte addressing.

Datais placed into the buffer for any request size - byte, half-word, word, double-word and the 3, 5-7 byte sizes
alowed by SWR/SWL/SDR/SDL instructions.

A byte can be over-written with new data before the buffer datais flushed out of the core.

Multiple buffers (each holding data from multiple store instructions) can be active at one time.

The uncached accelerated data within the write-buffer is sent to physical memory under these rules:

As aconsequence of a SYNC instruction being executed. All uncached accelerated data within al write buffers
is sent to physical memory in this situation.

If awrite-buffer isentirely full with uncached accelerated data. Normally, this means an entire cache-line of
uncached accelerated datais held within the buffer.

If the target address of any load instruction matches the address of any uncached accelerated data within the
write buffer.

If the target address of any store instruction using any other type of access type matches the address of any
uncached accelerated data within the write buffer.

Asaconseguence of anon-coherent SY NCI instruction being executed. All uncached accel erated datawithin all
write buffersis sent to physical memory in this situation.

If the target address of a PREF Nudge operation matches the address of any uncached accel erated datawithin the
write buffer.

All write-buffers capable of holding uncached accelerated data are already active and another store instruction
using uncached accelerated access is executed and whose target address does not match any of these write-buff-
ers. In this case, at least one of the write-buffers must be emptied to physical memory to make space for the new
store data.

2.8.9 Implementation-Specific Access Types

An implementation may provide memory access types other than uncached or cached. | mplementati on-specific docu-
mentation accompanies each processor, and defines the properties of the new access types and their effect on all
memory-related operations.

2.8.10 Cacheability and Coherency Attributes and Access Types

Memory access types are specified by architecturally-defined and implementati on-specific Cacheability and Coher-
ency Attribute bits (CCAs) kept in TLB entries.

Slightly different cacheability and coherency attributes such as “ cached coherent, update on write” and “ cached
coherent, exclusive on write” can map to the same memory access type; in this case they both map to cached coher-
ent. In order to map to the same access type, the fundamental mechanisms of both CCAs must be the same.

MIPS® Architecture For Programmers Volume I-A: Introduction to the MIPS64® Architecture, Revision 5.04

2.8 Programming Model

When the operation of the instruction is affected, the instructions are described in terms of memory accesstypes. The
load and store operations in a processor proceed according to the specific CCA of the reference, however, and the
pseudocode for load and store common functions uses the CCA value rather than the corresponding memory access
type.

2.8.11 Mixing Access Types

It is possible to have more than one virtual location mapped to the same physical location (known as aliasing). The
memory access type used for the virtual mappings may be different, but it is not generally possible to use mappings
with different access types at the sametime.

For all accesses to virtual locations with the same memory access type, a processor executing load and store instruc-
tions on a physical location must ensure that the instructions occur in proper program order.

A processor can execute aload or store to a physical location using one access type, but any subsequent load or store
to the same location using a different memory access typeis UNPREDICTABLE, unless a privileged instruction
seguence to change the access type is executed between the two accesses. Each implementation has a privileged
implementati on-specific mechanism to change access types.

The memory access type of alocation affects the behavior of I-fetch, load, store, and prefetch operations to that loca
tion. In addition, memory access types affect someinstruction descriptions. Load Linked (LL, LLD) and Store Condi-
tional (SC, SCD) have defined operation only for locations with cached memory access type.

2.8.12 Instruction Fetches

2.8.12.1 Instruction fields layout

For MIPS instructions, the layout of the bit fields within the instructions stays the same regardless of the endianness
mode in which the processor is executing. The MIPS architecture only uses Little-Endian bit orderings. Bit 0 of an
instruction is always the right-most bit within the instruction while bit 31 is always the left-most bit within a 32-bit
instruction. The major opcode is always the left-most 6 bits within the instruction.

2.8.12.2 MIPS32 and MIPS64 Instruction placement and endianness

For the MIPS32 and M1PS64 base architectures, instructions are always 32 bits. All instructions are naturally aligned
in memory (address bits 1:0 are 0bQ0).

Instruction words are always placed in memory according to the endianness.
Figure 2.18 shows an example where the width of external memory is 64-bits (two words) and the processor is exe-
cuting in little-endian mode and the instructions are placed in memory for little-endian execution. In this case, the less

significant address is the the right-most word of the dword while the more significant address is the left-most word
within the dword.

MIPS® Architecture For Programmers Volume I-A: Introduction to the MIPS64® Architecture, Revision 5.04 44

The MIPS Architecture: An Introduction

Figure 2.18 Two instructions placed in a 64-bit wide, little-endian memory

Most-significant byte Double Word Least-sig7‘ﬁcant byte
1
Bit # within dword | 63 ;\56 55 4847 4039 3231 2423 1615 8 7 /o |
Address Bits[2:0] 6 5 4 3 2 1 0
Word Word
1 1

Bit # withinword 131 2423 16 15 87 0 |31 24 23 16 15 8 7 0]
Byte # within word 3 2 1 0 3 2 1 0

Program order | Younger Instruction | | Older Instruction |

Z Z

Major opcode here Major opcode here

Figure 2.19 shows the equivalent Big-Endian example where the less significant address refers to the left-most word
within the dword and the more significant address refers to the right-most word within the dword. In both BE and LE
examples, the bit locations within the instruction words has not changed. The location of the major opcode is always
at the left-most bits within the word.

Figure 2.19 Two instructions placed in a 64-bit wide, big-endian memory

Least-significant byte Most-significant byte
g vt Double Word g vt

l /
Bit # within dword | 63 &56 55 48 47 4039 3231 2423 1615 8 7 /o I
Address Bits[2:0] 1 2 3 4 5 6 7

W(I)rd Wolrd
Bit # within word |31 2423 16 15 87 01 24 23 1615 8 7 0|
Byte # within word 0 1 2 3 0 1 2 3

Program order | Older Instruction | | Younger Instruction |

Z Z

Major opcode here Major opcode here

on. The major opcode is always the left-most 6 bits within the instruction.

2.8.12.3 Instruction fetches using uncached access to memory without side-effects

Memory regions having no access side-effects can be read an infinite amount of times without changing the value
received. For such regions accessed with uncached instruction fetches, the following behaviors are allowed:

It is allowed for the fetch transfer size for uncached memory access to be larger than one instruction word. In this
case, it is implementation specific whether multiple instruction fetches are done to the same memory location. It

is not required for the processor to have a register to buffer the un-used instructions of the transfer for subsequent
execution.

Speculative instruction fetches are allowed. Table 2.2 list some types of speculative instruction fetches.

45 MIPS® Architecture For Programmers Volume I-A: Introduction to the MIPS64® Architecture, Revision 5.04

2.8 Programming Model

Table 2.2 Speculative instruction fetches

Sequential instructions located after branch/jump fetched before the branch/jump taken/not-taken
decision has been determined.

Predicted branch/jump target addresses fetched before branch/jump taken/not-taken decision has
|been determined or before when target address has been calculated.

Predicted jump target register values before target register has been read.

Predicted return addresses before return register has been read.

Any other type of prefetching ahead of execution.

2.8.12.4 Instruction fetches using uncached access to memory with side-effects

Access side-effects for a memory region might include FIFO behavior, stack behavior or have location-specific
behavior (one memory location defining the behavior of another memory location). For such regions accessed with
uncached instruction fetches, these are the architectural requirements:

The transfer size can only be one instruction word per instruction fetch.

Speculative instruction fetches are not allowed. The types of instruction fetches listed in Table 2.2 are not
allowed.

The architecture defines this memory segment with access side-effects:
» EJTAG Debug Memory space (dmseg). Please refer to MIPS document - MD00047 EJTAG Specification.

Beyond this defined segment, the system programmer/designer is reminded that it is possible to memory map an IO
device with access side-effects to any uncached memory location, even within segments which the architecture does
not define to have access side-effects. For that reason, any implementation which allows behaviors listed in

2.8.12.3 “Instruction fetches using uncached access to memory without side-effects” should restrict software from
executing code within any memory region with side-effects.

2.8.12.5 Instruction fetches using cacheable access to memory
The minimum transfer size for cacheable access is one cacheline. The transfer size may be multiple whole cachelines.

Speculative accesses to cacheable memory spaces are allowed as cacheable memory spaces are defined to have no
access side-effects. Table 2.2 list some types of speculative instruction fetches.

2.8.12.6 Instruction fetchs and exceptions
Precise exception model for instruction fetches

The MIPS architecture uses the precise exception model for instruction fetches. A precise exception means that for an
instruction-sourced exception, the cause of an exception is reported on the exact instruction which the processor has
attempted to execute and has caused the exception.

It is not allowed to report an exception for an instruction which could not be executed due to program control flow.
For example, if a branch/jump is taken and the instruction after the branch is not to be executed, the address checks
(alignment, MMU match/validity, access priviledge) for that not-to-be-executed instruction may not generate any
exception.

MIPS® Architecture For Programmers Volume I-A: Introduction to the MIPS64® Architecture, Revision 5.04 46

The MIPS Architecture: An Introduction

a7

Instruction fetch exceptions on branch delay-slots

For instructions occupying a branch delay-slot, any exceptions, including those generated by the fetch of that instruc-
tion, should report the exception results so that the branch can be correctly replayed upon return from the exception
handler.

2.8.12.7 Self-Modified Code

When the processor writes memory with new instructions at run-time, there are some software steps that must be
taken to ensure that the new instructions are fetched properly.

1. The path of instruction fetches to external memory may not be the same as the path of data loads/stores to exter-
nal memory (this feature is known as a Harvard architecture). The new instructions must be flushed out to the
first level of the memory hierarchy which is shared by both the instruction fetchs and the data | oad/stores.

2. The processor must wait until all of the new instructions have actually been written to this shared level of the
memory hierarchy.

3. If there are caches which hold instructions between that first shared level of memory hierarchy and the processor
pipeline, any stale instructions within those caches must be first invalidated before executing the new instruc-
tions.

4. Some processors might implement some type of instruction prefetching. Precautions must be used to ensure that
the prefetching does not interfere with the previous steps.

MIPS® Architecture For Programmers Volume I-A: Introduction to the MIPS64® Architecture, Revision 5.04

2.8 Programming Model

MIPS® Architecture For Programmers Volume I-A: Introduction to the MIPS64® Architecture, Revision 5.04 48

Chapter 3

Modules and Application Specific Extensions

This section gives an overview of the Modules and Architecture Specific Extensions that are supported by the MI1PS
Architecture Family.

3.1 Description of Optional Components

Asthe MIPS architecture is adopted into awider variety of markets, the need to extend this architecture in different
directions becomes more and more apparent. Therefore various optional components are provided for use with the
base | SAs (MIPS32/M1PS64 and microM 1 PS32/microM1PS64).

These optional components are licensed to MIPS architecture licenseesin two different ways:
1. Modules- these optional components are part of the Base Architecture (Revision 5 and newer). |If acompany has
licensed one of the base architectures from MIPS Technologies, then that company has also rights to implement

any of the assocatied modules of that base architecture.

2. Application Specific Extensions - these optional components are sold as separate architecture products from
MIPS Technologies.

The Modules and ASEs are both optional, so the architecture is not permanently bound to support them and the ASEs
are used only as needed.

Extensionsto the ISA are driven by the requirements of the computer segment, or by customers whose focusis prima-
rily on performance. A Module or ASE can be used with the appropriate | SA to meet the needs of a specific applica-
tion or an entire class of applications.

Figure 3.1 shows how ASEs interrelate with the MIPS32 and MIPS64 | SAs.

MIPS® Architecture For Programmers Volume I-A: Introduction to the MIPS64® Architecture, Revision 5.04 49

3.2 List of Application Specific Instructions

Figure 3.1 MIPS ISAs and ASEs

Enhanced Geometry Processing Code Compaction (also could use microMIPS)
MIPS-3D
microControllers MCU | § ASE ' MIPS16e
ASE . ASE
Smart Cards e
SmartMIPS
ASE MIPS32 MIPS64
Architecture Architecture
N
MIPS MT o MIPS MSA
Module ! Mrl\:ZUIbP MIPS VZE Module
odule ‘ Module k
Multi-Threading SIMD Processing
Signal Processing HW Virtualization

The MIPS32 Architecture is a strict subset of the MIPS64 Architecture. ASEs are applicable to one or both of the
base architectures as dictated by market need and the requirements placed on the base architecture by the ASE defini-
tion.

3.2 List of Application Specific Instructions

As of the publishing date of this document, the following Application Specific Extensions were supported by the

architecture.
Supported
Component Module or ASE Base Architectures Use
MIPS16e™ ASE MIPS32 or MIPS64 Code Compaction
MIPS-3D® ASE MIPS32 or MIPS64 Geometry Processing
SmartMIPS® ASE MIPS32 Smart Cards and Smart Objects
MIPS® DSP Module MIPS32 or MIPS64 Signal Processing
MIPS® MT Module MIPS32 or MIPS64 Multi-Threading
MCU ASE MIPS32 or MIPS64 Fast Interrupt Response & I/O register
programming
VZE Module MIPS32 or MIPS64 Hardware Support for Virtualization
MSA Module MIPS32 or MIPS64 SIMD support

3.2.1 The MIPS16e™ Application Specific Extension to the MIPS32 and MIPS64 Archi-
tecture

The MIPS16e ASE is composed of 16-bit compressed code instructions, designed for the embedded processor market
and situations with tight memory constraints. The core can execute both 16- and 32-bit instructions intermixed in the

MIPS® Architecture For Programmers Volume [-A: Introduction to the MIPS64® Architecture, Revision 5.04 50

Modules and Application Specific Extensions

51

same program, and is compatible with both the M1PS32 and MIPS64 Architectures. Volume IV-a of this document set
describes the MIPS16e ASE.

The microMIPS Architectures supercedes the M1PS16e A SE asthe small code-size solution. microM1PS providesfor
small code sizes for kernelmode code, floating-point code. These were not available through MI1PS16e.

3.2.2 The MDMX™ Application Specific Extension to the MIPS64 Architectures

The MIPS Digital Media Extension (MDMX) provides video, audio, and graphics pixel processing through vectors of
small integers. Although not a part of the MIPS | SA, this extension isincluded for informational purposes. Volume
IV-b of this document set describes the MDMX ASE.

3.2.3 The MIPS-3D® Application Specific Extension to the MIPS Architecture

The MIPS-3D A SE provides enhanced performance of geometry processing calculations by building on the paired
single floating point data type, and adding specific instructions to accel erate computations on these data types. Vol-
ume IV-c of this document set describes the MIPS-3D ASE. Because the MIPS-3D A SE requires a 64-bit floating
point unit, it is only available with a Release 1 M1PS64 processor, or a Release 2 (or subsequent releases) processor
that includes a 64-bit FPU.

3.2.4 The SmartMIPS® Application Specific Extension to the MIPS32 Architecture

The SmartMIPS ASE extends the MIPS32 Architectures with a set of new and modified instruction designed to
improve the performance and reduce the memory consumption of MI1PS-based smart card or smart object systems.
Because the SmartMIPS A SE requires the MIPS32 Architecture, it is not discussed in this document set.

3.2.5 The MIPS® DSP Module to the MIPS Architecture

The MIPS DSP Module provides enhanced performance of signal-processing applications by providing computa-
tional support for fractional datatypes, SIMD, saturation, and other elements that are commonly used in such applica-
tions. Volume I V-e of this document set describes the MIPS DSP Module.

3.2.6 The MIPS® MT Module to the MIPS Architecture

The MIPSMT Module provides the architecture to support multi-threaded implementations of the Architecture. This
includes support for both virtual processors and lightweight thread contexts. Volume IV-f of this document set
describesthe MIPSMT Module.

3.2.7 The MIPS® MCU Application Specific Extension to the MIPS Architecture

The MIPS MCU ASE provides enhanced handling of memory-mapped 1/O registers and lower interrupt latencies.
Volume 1V-g of this document set describes the MIPS MCU ASE.

3.2.8 The MIPS® Virtualization Module to the MIPS Architecture

The MIPS Virtualization Module provides hardware accel eration of virtuaization of Operating Systems. Volume IV-i
of this document set describes the MIPS VZ Module.

MIPS® Architecture For Programmers Volume I-A: Introduction to the MIPS64® Architecture, Revision 5.04

3.2 List of Application Specific Instructions

3.2.9 The MIPS® SIMD Architecture Module to the MIPS Architecture

The MIPS SIMD Architecture Module provides high performance parallel processing of vector operations through
the use of 128-hit wide vector registers. Volume V-] of this document set describes the MIPS MSA Module.

MIPS® Architecture For Programmers Volume I-A: Introduction to the MIPS64® Architecture, Revision 5.04 52

Chapter 4

Overview of the CPU Instruction Set

This chapter gives an overview of the CPU instructions, including a description of CPU instruction formats. An over-
view of the FPU instructionsis given in Chapter 5, “Overview of the FPU Instruction Set” on page 69.

4.1 CPU Instructions, Grouped By Function

CPU ingtructions are organized into the following functional groups:
* Load and store

e Computationa

e Jump and branch

* Miscellaneous

» Coprocessor

Each instruction is 32 bitslong.

4.1.1 CPU Load and Store Instructions

MIPS processors use aload/store architecture; all operations are performed on operands held in processor registers
and main memory is accessed only through load and store instructions.

4.1.1.1 Types of Loads and Stores
There are several different types of load and store instructions, each designed for a different purpose:
» Transferring variously-sized fields (for example, LB, SW)
» Trading transferred data as signed or unsigned integers (for example, LHU)
» Accessing unaligned fields (for example, LWR, SWL)
» Selecting the addressing mode (for example, SDXCL, in the FPU)
» Atomic memory update (read-modify-write: for instance, LL/SC)

Regardless of the byte ordering (big- or little-endian), the address of a halfword, word, or doubleword is the lowest
byte address among the bytes forming the object:

» For big-endian ordering, thisis the most-significant byte.

MIPS® Architecture For Programmers Volume I-A: Introduction to the MIPS64® Architecture, Revision 5.04 53

4.1 CPU Instructions, Grouped By Function

» For alittle-endian ordering, thisisthe least-significant byte.

Refer to “Byte Ordering and Endianness’ on page 38 for more information on big-endian and little-endian data order-
ing.

4.1.1.2 Load and Store Access Types

Tables 4.1 and 4.2 list the data sizes that can be accessed through CPU load and store operations. These tables also
indicate the particular |SA within which each operation is defined.

Table 4.1 Load and Store Operations Using Register + Offset Addressing Mode

CPU Coprocessors 1 and 2
Load Load
Data Size Signed Unsigned Store Load Store
Byte MIPS32 MIPS32 MIPS32
Hafword MIPS32 MIPS32 MIPS32
Word MIPS32 MIPS64 MIPS32 MIPS32 MIPS32
Doubleword (CPU) MIPS64 MIPS64
Doubleword (FPU) MIPS32 MIPS32
Unaligned word MIPS32 MIPS32
Unaligned doubleword MIPS64 MIPS64
Linked word (atomic modify) MIPS32 MIPS32
Linked doubleword (atomic mod- MIPS64 MIPS64
ify)
Table 4.2 FPU Load and Store Operations Using Register + Register Addressing Mode
Floating Point Coprocessor Only
Data Size Load Store
Word MIPS64 MIPS64
MIPS32 Release 2 MIPS32 Release 2
Doubleword MIPS64 MIPS64
MIPS32 Release 2 MIPS32 Release 2
Unaligned Doubleword Indexed MIPS64 MI1PS64
MIPS32 Release 2 MIPS32 Release 2

4.1.1.3 List of CPU Load and Store Instructions

The following data sizes (as defined in the AccessLength field) are transferred by CPU load and store instructions:

 Byte
e Halfword
« Word

MIPS® Architecture For Programmers Volume I-A: Introduction to the MIPS64® Architecture, Revision 5.04

54

Overview of the CPU Instruction Set

e Doubleword

Signed and unsigned integers of different sizes are supported by |oads that either sign-extend or zero-extend the data
loaded into the register.

Table 4.3 lists aligned CPU load and store instructions, while unaligned loads and stores are listed in Table 4.4. Each
table also lists the MIPS I SA within which an instruction is defined.

Table 4.3 Aligned CPU Load/Store Instructions

Mnemonic Instruction Defined in MIPS ISA
LB Load Byte MIPS32
LBE Load Byte EVA MIPS32
LBU Load Byte Unsigned MIPS32
LBUE Load Byte Unsigned EVA MIPS32
LD Load Doubleword MIPS64
LH Load Halfword MIPS32
LHE Load Halfword EVA MIPS32
LHU Load Halfword Unsigned MIPS32
LHUE Load Halfword Unsigned EVA MIPS32
LW Load Word MIPS32
LWE Load Word EVA MIPS32
Lwu Load Word Unsigned MIPS64
SB Store Byte MIPS32
SBE Store Byte EVA MIPS32
SD Store Doubleword MIPS64
SH Store Halfword MIPS32
SHE Store Halfword EVA MIPS32
SwW Store Word MIPS32
SWE Store Word EVA MIPS32

Unaligned words and doublewords can be loaded or stored in just two instructions by using a pair of the special
instructionslisted in Table 4.4. Theload instructions read the | eft-side or right-side bytes (left or right side of register)
from an aligned word and merge them into the correct bytes of the destination register.

Unaligned CPU load and store instructions are listed in Table 4.4, along with the MIPS I1SA within which an instruc-

tion is defined.
Table 4.4 Unaligned CPU Load and Store Instructions
Mnemonic Instruction Defined in MIPS ISA
LDL Load Doubleword L eft MIPS64
LDR Load Doubleword Right MIPS64
LWL Load Word L eft MIPS32
LWR Load Word Right MIPS32

55 MIPS® Architecture For Programmers Volume I-A: Introduction to the MIPS64® Architecture, Revision 5.04

4.1 CPU Instructions, Grouped By Function

Table 4.4 Unaligned CPU Load and Store Instructions (Continued)

Mnemonic Instruction Defined in MIPS ISA
SDL Store Doubleword Left MIPS64
SDR Store Doubleword Right MIPS64
SWL Store Word Left MIPS32
SWR Store Word Right MIPS32

4.1.1.4 Loads and Stores Used for Atomic Updates

The paired instructions, Load Linked and Store Conditional, can be used to perform an atomic read-modify-write of
word or doubleword cached memory locations. These instructions are used in carefully coded sequences to provide
one of several synchronization primitives, including test-and-set, bit-level locks, semaphores, and sequencers and
event counts. Table 4.5 liststhe LL and SC instructions, along with the MIPS | SA within which an instruction is

defined.
Table 4.5 Atomic Update CPU Load and Store Instructions
Mnemonic Instruction Defined in MIPS ISA
LL Load Linked Word MIPS32
LLD Load Linked Doubleword MIPS64
SC Store Conditional Word MIPS32
SCD Store Conditional Doubleword MIPS64

4.1.1.5 Coprocessor Loads and Stores
If aparticular coprocessor is not enabled, loads and stores to that processor cannot execute and the attempted load or
store causes a Coprocessor Unusable exception. Enabling a coprocessor is a privileged operation provided by the Sys-
tem Control Coprocessor, CPO.

Table 4.6 lists the coprocessor |oad and store instructions.

Table 4.6 Coprocessor Load and Store Instructions

Mnemonic Instruction Defined in MIPS ISA
LDCz Load Doubleword to Coprocessor-z, z =1 or 2 MIPS32
LWCz Load Word to Coprocessor-z,z=1or 2 MIPS32
SDCz Store Doubleword from Coprocessor-z, z=1 or 2 MIPS32
SWCz Store Word from Coprocessor-z, z=1or 2 MIPS32

MIPS® Architecture For Programmers Volume I-A: Introduction to the MIPS64® Architecture, Revision 5.04 56

Overview of the CPU Instruction Set

57

Table 4.7 lists the specific FPU load and store instructions;! it also lists the MIPS ISA within which an instruction
was first defined.

Table 4.7 FPU Load and Store Instructions Using Register + Register Addressing

Mnemonic Instruction Defined in MIPS ISA
LWXC1 Load Word Indexed to Floating Point MIPS64
MIPS32 Release 2
SWXC1 Store Word Indexed from Floating Point MIPS64
MIPS32 Release 2
LDXC1 Load Doubleword Indexed to Floating Point MIPS64
MIPS32 Release 2
SDXC1 Store Doubleword Indexed from Floating Point MIPS64
MIPS32 Release 2
LUXC1 Load Doubleword Indexed Unaligned to Floating Point MIPS64
MIPS32 Release 2
SUXC1 Store Doubleword Indexed Unaligned from Floating Point MIPS64
MIPS32 Release 2

4.1.2 Computational Instructions

This section describes the following:

* ALU Immediate and Three-Operand Instructions
 ALU Two-Operand Instructions

* Shift Instructions

* Multiply and Divide Instructions

2's complement arithmetic is performed on integers represented in 2's complement notation. These are signed ver-
sions of the following operations:

e Add

* Subtract
e Multiply
» Divide

The add and subtract operations labelled “unsigned” are actually modulo arithmetic without overflow detection.

There are also unsigned versions of multiply and divide, as well as afull complement of shift and logical operations.
Logica operations are not sensitive to the width of the register.

MIPS32 provided 32-bit integers and 32-bit arithmetic. MIPS64 adds 64-bit integers and provides separate arithmetic
and shift instructions for 64-bit operands.

1. FPU loadsand stores are listed here with the other coprocessor |oads and stores for convenience.

MIPS® Architecture For Programmers Volume I-A: Introduction to the MIPS64® Architecture, Revision 5.04

4.1 CPU Instructions, Grouped By Function

4.1.2.1 ALU Immediate and Three-Operand Instructions

Table 4.8 lists those arithmetic and logical instructions that operate on one operand from aregister and the other from
a 16-bit immediate value supplied by the instruction word. Thistable also lists the MIPS I SA within which an instruc-

tion is defined.

The immediate operand is treated as a signed value for the arithmetic and compare instructions, and treated as a logi-
cal value (zero-extended to register length) for the logical instructions.

Table 4.8 ALU Instructions With a 16-bit Inmediate Operand

Mnemonic Instruction Defined in MIPS ISA
ADDI Add Immediate Word MIPS32
ADDIU! Add Immediate Unsigned Word MIPS32
ANDI And Immediate MIPS32
DADDI Doubleword Add Immediate MIPS64
DADDIU! Doubleword Add Immediate Unsigned MIPS64
LUI Load Upper Immediate MIPS32
ORI Or Immediate MIPS32
SLTI Set on Less Than Immediate MIPS32
SLTIU Set on Less Than Immediate Unsigned MIPS32
XORI Exclusive Or Immediate MIPS32

1. Theterm “unsigned” in the instruction nameis a misnomer; this operation is 32-bit modulo arithmetic that does not trap

on overflow.

Table 4.9 describes ALU instructions that use three operands, along with the MIPS I SA within which an instruction is

defined.
Table 4.9 Three-Operand ALU Instructions
Mnemonic Instruction Defined in MIPS ISA

ADD Add Word MIPS32
ADDU! Add Unsigned Word MIPS32
AND And MIPS32
DADD Doubleword Add MIPS64
DADDU! Doubleword Add Unsigned MIPS64
DSUB Doubleword Subtract MIPS64
DsuBU! Doubleword Subtract Unsigned MIPS64
NOR Nor MIPS32
OR Or MIPS32
SLT Set on Less Than MIPS32
SLTU Set on Less Than Unsigned MIPS32
SuB Subtract Word MIPS32

MIPS® Architecture For Programmers Volume I-A: Introduction to the MIPS64® Architecture, Revision 5.04

58

Overview of the CPU Instruction Set

Table 4.9 Three-Operand ALU Instructions (Continued)

Mnemonic Instruction Defined in MIPS ISA
suBu! Subtract Unsigned Word MIPS32
XOR Exclusive Or MIPS32

1. Theterm “unsigned” in the instruction nameis a misnomer; this operation is 32-bit modulo arithmetic that does not trap
on overflow.

4.1.2.2 ALU Two-Operand Instructions

Table 4.9 describes ALU instructions that use two operands, along with the MIPS ISA within which aninstruction is

defined.
Table 4.10 Two-Operand ALU Instructions
Mnemonic Instruction Defined in MIPS ISA
CLO Count Leading Onesin Word MIPS32
CLz Count Leading Zerosin Word MIPS32
DCLO Count Leading Ones in Doubleword MIPS64
DCLZ Count Leading Zeros in Doubleword MIPS64

4.1.2.3 Shift Instructions
The ISA defines two types of shift instructions:
e Those that take afixed shift amount from a 5-bit field in the instruction word (for instance, SLL, SRL)
e Those that take a shift amount from the low-order bits of a general register (for instance, SRAV, SRLV)

Theinstructions with afixed shift amount are limited to a 5-bit shift count, so there are separate instructions for dou-
bleword shifts of 0-31 bits (for instance, DSLL) and 32-63 hits (for instance, DSLL 32).

Shift instructions are listed in Table 4.11, along with the MIPS ISA within which an instruction is defined.

Table 4.11 Shift Instructions

Mnemonic Instruction Defined in MIPS ISA

DROTR Doubleword Rotate Right MIPS64 Release 2

DROTR32 Doubleword Rotate Right Plus 32 MIPS64 Release 2

DROTRV Doubleword Rotate Right Variable MIPS64 Release 2
DSLL Doubleword Shift Left Logical MI1PS64
DSLL32 Doubleword Shift Left Logical + 32 MIPS64
DSLLV Doubleword Shift Left Logical Variable MIPS64
DSRA Doubleword Shift Right Arithmetic MI1PS64
DSRA32 Doubleword Shift Right Arithmetic + 32 MIPS64
DSRAV Doubleword Shift Right Arithmetic Variable MIPS64
DSRL Doubleword Shift Right Logical MI1PS64

59 MIPS® Architecture For Programmers Volume I-A: Introduction to the MIPS64® Architecture, Revision 5.04

4.1 CPU Instructions, Grouped By Function

Table 4.11 Shift Instructions (Continued)

Mnemonic Instruction Defined in MIPS ISA
DSRL32 Doubleword Shift Right Logical + 32 MIPS64
DSRLV Doubleword Shift Right Logical Variable MI1PS64

ROTR Rotate Word Right MIPS32 Release 2
ROTRV Rotate Word Right Variable MIPS32 Release 2
SLL Shift Word Left Logical MIPS32
SLLV Shift Word Left Logical Variable MIPS32
SRA Shift Word Right Arithmetic MIPS32
SRAV Shift Word Right Arithmetic Variable MIPS32
SRL Shift Word Right Logical MIPS32
SRLV Shift Word Right Logical Variable MIPS32

4.1.2.4 Multiply and Divide Instructions

The multiply and divide instructions produce twice as many result bits as is typical with other processors. With one
exception, they deliver their results into the HI and LO special registers. The MUL instruction delivers the lower half
of the result directly to a GPR.

* Multiply produces afull-width product twice the width of the input operands; the low half isloaded into LO and
the high half isloaded into HI.

* Multiply-Add and Multiply-Subtract produce a full-width product twice the width of the input operations and
adds or subtracts the product from the concatenated value of HI and LO. The low half of the addition is loaded
into LO and the high half is loaded into HI.

» Divide produces a quotient that isloaded into LO and aremainder that isloaded into HI.

The results are accessed by instructions that transfer data between HI/LO and the general registers.

Table 4.12 lists the multiply, divide, and HI/LO move instructions, along with the MIPS | SA within which an instruc-

tion is defined.
Table 4.12 Multiply/Divide Instructions

Mnemonic Instruction Defined in MIPS ISA
DDIV Doubleword Divide MIPS64
DDIVU Doubleword Divide Unsigned MIPS64
DIV Divide Word MIPS32
DIVU Divide Unsigned Word MIPS32
DMULT Doubleword Multiply MIPS64
DMULTU Doubleword Multiply Unsigned MIPS64
MADD Multiply and Add Word MIPS32
MADDU Multiply and Add Word Unsigned MIPS32
MFHI Move From HI MIPS32
MFLO Move From LO MIPS32

MIPS® Architecture For Programmers Volume I-A: Introduction to the MIPS64® Architecture, Revision 5.04 60

Overview of the CPU Instruction Set

Table 4.12 Multiply/Divide Instructions (Continued)

Mnemonic Instruction Defined in MIPS ISA
MSUB Multiply and Subtract Word MIPS32
MSUBU Multiply and Subtract Word Unsigned MIPS32
MTHI Move To HI MIPS32
MTLO Move To LO MIPS32
MUL Multiply Word to Register MIPS32
MULT Multiply Word MIPS32
MULTU Multiply Unsigned Word MIPS32

4.1.3 Jump and Branch Instructions

This section describes the following:

Types of Jump and Branch Instructions Defined by the |SA
Branch Delays and the Branch Delay Slot
Delay Slot Behavior

List of Jump and Branch Instructions

4.1.3.1 Types of Jump and Branch Instructions Defined by the ISA

The architecture defines the following jump and branch instructions:

PC-relative conditional branch
PC-region unconditional jump

Absolute (register) unconditional jump

A set of procedure calls that record areturn link address in a general register.

4.1.3.2 Branch Delays and the Branch Delay Slot

All branches have an architectural delay of oneinstruction. The instruction immediately following a branchis said to
be in the branch delay slot. If abranch or jump instruction is placed in the branch delay slot, the operation of both

instructionsis UNPREDICTABLE.

By convention, if an exception or interrupt prevents the completion of an instruction in the branch delay slot, the
instruction stream is continued by re-executing the branch instruction. To permit this, branches must be restartable;
procedure calls may not use the register in which the return link is stored (usually GPR 31) to determine the branch

target address.

4.1.3.3 Delay Slot Behavior

There are two versions of branches and jumps; they differ in the manner in which they handle the instruction in the

delay slot when the branch is not taken and execution falls through.

61

MIPS® Architecture For Programmers Volume I-A: Introduction to the MIPS64® Architecture, Revision 5.04

» Branch and Jump instructions execute the instruction in the delay slot.

4.1 CPU Instructions, Grouped By Function

» Branch likely instructions do not execute the instruction in the delay dot if the branch is not taken (they are said
to nullify the instruction in the delay slot).

Although the Branch Likely instructionsareincluded in this specification, softwareis strongly encour aged

to avoid the use of the Branch Likely instructions, asthey will beremoved from a futurerevision of the

MIPS Architecture.

4.1.3.4 List of Jump and Branch Instructions

Table 4.13 lists instructions that jump to a procedure call within the current 256 M B-aligned region.

Table 4.14 lists instructions that jump to an absolute address held in aregister.

Table 4.13 lists the unconditional jump instructions within a given 256 M Byte region. Table 4.15 lists branch instruc-
tions that compare two registers before conditionally executing a PC-relative branch. Table 4.16 lists branch instruc-
tions that test a register—compare with zero—before conditionally executing a PC-relative branch. Table 4.17 lists
the deprecated Branch Likely Instructions.

Each table also lists the MIPS I SA within which an instruction is defined.

Table 4.13 Unconditional Jump Within a 256 Megabyte Region

Mnemonic Instruction Defined in MIPS ISA
J Jump MIPS32
JAL Jump and Link MIPS32
JALX Jump and Link Exchange MIPS16e
MIPS32 Release 3

Table 4.14 Unconditional Jump using Absolute Address

Mnemonic Instruction Defined in MIPS ISA
JALR Jump and Link Register MIPS32
JALR.HB Jump and Link Register with Hazard Barrier MIPS32 Release 2
JR Jump Register MIPS32
JR.HB Jump Register with Hazard Barrier MIPS32 Release 2

Table 4.15 PC-Relative Conditional Branch Instructions Comparing Two Registers

Defined in MIPS
Mnemonic Instruction ISA
BEQ Branch on Equal MIPS32
BNE Branch on Not Equal MIPS32

MIPS® Architecture For Programmers Volume I-A: Introduction to the MIPS64® Architecture, Revision 5.04

62

Overview of the CPU Instruction Set

63

Table 4.16 PC-Relative Conditional Branch Instructions Comparing With Zero

Defined in MIPS
Mnemonic Instruction ISA
BGEZ Branch on Greater Than or Equal to Zero MIPS32
BGEZAL Branch on Greater Than or Equal to Zero and Link MIPS32
BGTZ Branch on Greater Than Zero MIPS32
BLEZ Branch on Less Than or Equal to Zero MIPS32
BLTZ Branch on Less Than Zero MIPS32
BLTZAL Branch on Less Than Zero and Link MIPS32
Table 4.17 Deprecated Branch Likely Instructions
Defined in MIPS
Mnemonic Instruction ISA
BEQL Branch on Equal Likely MIPS32
BGEZALL | Branch on Greater Than or Equal to Zero and Link Likely MIPS32
BGEZL Branch on Greater Than or Equal to Zero Likely MIPS32
BGTZL Branch on Greater Than Zero Likely MIPS32
BLEZL Branch on Less Than or Equal to Zero Likely MIPS32
BLTZALL |BranchonLess Than Zero and Link Likely MIPS32
BLTZL Branch on Less Than Zero Likely MIPS32
BNEL Branch on Not Equal Likely MIPS32

4.1.4 Miscellaneous Instructions

Miscellaneous instructions include:

e Instruction Serialization (SYNC and SYNCI)

* Exception Instructions

e Conditional Move Instructions

e Prefetch Instructions

e NOP Instructions

4.1.4.1 Instruction Serialization (SYNC and SYNCI)

In normal operation, the order in which load and store memory accesses appear to aviewer outside the executing pro-
cessor (for instance, in a multiprocessor system) is not specified by the architecture.

The SYNC instruction can be used to create a point in the executing instruction stream at which the relative order of
some loads and stores can be determined: loads and stores executed before the SYNC are completed before loads and
stores after the SYNC can start.

The SYNCI instruction synchronizes the processor caches with previous writes or other modifications to the instruc-
tion stream.

MIPS® Architecture For Programmers Volume I-A: Introduction to the MIPS64® Architecture, Revision 5.04

4.1 CPU Instructions, Grouped By Function

Table 4.18 lists the synchronization instructions, along with the MIPS ISA within which it is defined.

Table 4.18 Serialization Instruction

Mnemonic Instruction Defined in MIPS ISA
SYNC Synchronize Shared Memory MIPS32
SYNCI Synchronize Caches to Make Instruction Writes Effective MIPS32 Release 2

4.1.4.2 Exception Instructions

Exception instructions transfer control to a software exception handler in the kernel. There are two types of excep-
tions, conditional and unconditional. These are caused by the following instructions:

Trap instructions, which cause conditional exceptions based upon the result of a comparison

System call and breakpoint instructions, which cause unconditional exceptions

Table 4.19 lists the system call and breakpoint instructions. Table 4.20 lists the trap instructions that compare two

registers. Table 4.21 lists trap instructions, which compare a register value with an immediate value.

Each table dso lists the MIPS ISA within which an instruction is defined.

Table 4.19 System Call and Breakpoint Instructions

Mnemonic Instruction Defined in MIPS ISA
BREAK Breakpoint MIPS32
SYSCALL System Call MIPS32

Table 4.20 Trap-on-Condition Instructions Comparing Two Registers

Mnemonic Instruction Defined in MIPS ISA
TEQ Trap if Equal MIPS32
TGE Trap if Greater Than or Equal MIPS32
TGEU Trap if Greater Than or Equal Unsigned MIPS32
TLT Trap if Less Than MIPS32
TLTU Trap if Less Than Unsigned MIPS32
TNE Trap if Not Equal MIPS32
Table 4.21 Trap-on-Condition Instructions Comparing an Immediate Value

Mnemonic Instruction Defined in MIPS ISA
TEQI Trap if Equal Immediate MIPS32
TGEI Trap if Greater Than or Equal Immediate MIPS32
TGEIU Trap if Greater Than or Equal Immediate Unsigned MIPS32
TLTI Trap if Less Than Immediate MIPS32
TLTIU Trap if Less Than Immediate Unsigned MIPS32
TNEI Trap if Not Equal Immediate MIPS32

MIPS® Architecture For Programmers Volume I-A: Introduction to the MIPS64® Architecture, Revision 5.04

64

Overview of the CPU Instruction Set

4.1.4.3 Conditional Move Instructions

MIPS32 includesinstructions to conditionally move one CPU general register to another, based on the valuein athird
genera register. For floating point conditional moves, refer to Chapter 4.

Table 4.22 lists conditional move instructions, along with the MIPS ISA within which an instruction is defined.

Table 4.22 CPU Conditional Move Instructions

Mnemonic Instruction Defined in MIPS ISA
MOVF Move Conditional on Floating Point False MIPS32
MOVN Move Conditional on Not Zero MIPS32
MOVT Move Conditional on Floating Point True MIPS32
MOvVZ Move Conditional on Zero MIPS32

4.1.4.4 Prefetch Instructions
There are two prefetch advisory instructions:
* Onewith register+offset addressing (PREF)
* Onewith register+register addressing (PREFX)
These instructions advise that memory is likely to be used in a particular way in the near future and should be
prefetched into the cache. The PREFX instruction is encoded in the FPU opcode space, along with the other opera-
tions using register+register addressing

Table 4.23 Prefetch Instructions

Mnemonic Instruction Addressing Mode Defined in MIPS ISA
PREF Prefetch Register+Offset MIPS32
PREFX Prefetch Indexed Register+Register MIPS64
MIPS32 Release 2

4.1.4.5 NOP Instructions

The NOP instruction is actually encoded as an all-zero instruction. MIPS processors special-case this encoding as
performing no operation, and optimize execution of the instruction. In addition, SSNOP instruction, takes up one
issue cycle on any processor, including super-scalar implementations of the architecture.

Table 4.24 lists conditional move instructions, along with the MIPS I1SA within which an instruction is defined.

Table 4.24 NOP Instructions

Mnemonic Instruction Defined in MIPS ISA
NOP No Operation MIPS32
SSNOP Superscaar Inhibit NOP MIPS32

4.1.5 Coprocessor Instructions
This section contains information about the following:

65 MIPS® Architecture For Programmers Volume I-A: Introduction to the MIPS64® Architecture, Revision 5.04

4.1 CPU Instructions, Grouped By Function

* What Coprocessors Do
e System Control Coprocessor 0 (CPO)
* Foating Point Coprocessor 1 (CP1)
e Coprocessor Load and Store Instructions
4.1.5.1 What Coprocessors Do
Coprocessors are aternate execution units, with register files separate from the CPU. In abstraction, the MIPS archi-
tecture provides for up to four coprocessor units, numbered O to 3. Each level of the ISA defines a number of these

coprocessors, aslisted in Table 4.25.

Table 4.25 Coprocessor Definition and Use in the MIPS Architecture

Coprocessor MIPS32 MIPS64
CPO Sys Control Sys Control
CP1 FPU FPU
CP2 implementation specific
CP3 See Footnote® FPU (COP1X)
MIPS32r1: imp. spec.
MIPS32r2: FPU (COP1X)

1. In Release 1 of the MIPS32 Architecture, Coprocessor 3 was an implementa-
tion-specific coprocessor. In the M1PS64 Architecture, and in Release 2 of the
MIPS32 Architecture (and subsequent releases) Architectures, it is used exclu-
sively for the floating point unit and is not available for implementation-specific
use. Release 1 MIPS32 implementations are encouraged not to use Coprocessor
3 as an implementation-specific coprocessor.

Coprocessor 0 is aways used for system control and coprocessor 1 and 3 are used for the floating point unit. Copro-
cessor 2 is reserved for implementation-specific use.

A coprocessor may have two different register sets:

» Coprocessor general registers

» Coprocessor control registers

Each set contains up to 32 registers. Coprocessor computational instructions may use the registersin either set.

4.1.5.2 System Control Coprocessor 0 (CPO0)

The system controller for all MIPS processors isimplemented as coprocessor 0 (CPOZ), the System Control Copro-
cessor. It provides the processor control, memory management, and exception handling functions.

4.1.5.3 Floating Point Coprocessor 1 (CP1)

If asystem includes a Floating Point Unit, it isimplemented as coprocessor 1 (CP13). In Release 1 of the MIPS64
Architecture, and in Release 2 of the M1PS32 and M1PS64 Architectures, the FPU also uses the computation opcode

2. CPOinstructions use the COPO opcode, and as such are differentiated from the CPO designation in this book.

MIPS® Architecture For Programmers Volume I-A: Introduction to the MIPS64® Architecture, Revision 5.04 66

Overview of the CPU Instruction Set

space assigned to coprocessor unit 3, renamed COP1X. Details of the FPU instructions are documented in “ Overview
of the FPU Instruction Set” on page 69.

Coprocessor instructions are divided into two main groups:
* Load and store instructions (move to and from coprocessor), which are reserved in the main opcode space

» Coprocessor-specific operations, which are defined entirely by the coprocessor

4.1.5.4 Coprocessor Load and Store Instructions

Explicit load and store instructions are not defined for CPO; for CPO only, the move to and from coprocessor instruc-
tions must be used to write and read the CPO registers. The loads and stores for the remaining coprocessors are sum-
marized in “ Coprocessor Loads and Stores’ on page 56.

4.2 CPU Instruction Formats

67

A CPU instruction is asingle 32-bit aligned word. The CPU instruction formats are shown below:
* Immediate (see Figure 4.1)

o Jump (seeFigure4.2)

* Register (see Figure 4.3)

Table 4.26 describes the fields used in these instructions.

Table 4.26 CPU Instruction Format Fields

Field Description
opcode 6-bit primary operation code
rd 5-bit specifier for the destination register
rs 5-bit specifier for the source register
rt 5-bit specifier for the target (source/destination) register or used to specify functions within the
primary opcode REGIMM
immediate 16-bit signed immediate used for logical operands, arithmetic signed operands, |oad/store
address byte offsets, and PC-relative branch signed instruction displacement
instr_index 26-hit index shifted left two bits to supply the low-order 28 bits of the jump target address
sa 5-bit shift amount
function 6-bit function field used to specify functions within the primary opcode SPECIAL

4.2.1 CPU Instruction Restrictions

Most 32-bit integer CPU instructions (aside from shifts) require properly sign-extended 32-bit integer operands for

well-defined behavior.

FPU instructions (such as LWC1, SDC1, etc.) that use the COP1 opcode are differentiated from the CP1 designation in this
book. See “Overview of the FPU Instruction Set” on page 69 for more information about the FPU instructions.

MIPS® Architecture For Programmers Volume I-A: Introduction to the MIPS64® Architecture, Revision 5.04

4.2 CPU Instruction Formats

Figure 4.1 Immediate (I-Type) CPU Instruction Format

31 26 25 21 20 16 15
opcode rs rt immediate
6 5 5 16
Figure 4.2 Jump (J-Type) CPU Instruction Format
31 26 25 21 20 16 15 11 10
opcode instr_index
6 26
Figure 4.3 Register (R-Type) CPU Instruction Format
31 26 25 21 20 16 15 11 10
opcode rs rt rd sa function
6 5 5 5 5 6

MIPS® Architecture For Programmers Volume I-A: Introduction to the MIPS64® Architecture, Revision 5.04

68

Chapter 5

Overview of the FPU Instruction Set

This chapter describes the instruction set architecture (1SA) for the floating point unit (FPU) in the M1PS64 architec-
ture. In the MIPS architecture, the FPU isimplemented via Coprocessor 1 and Coprocessor 3, an optional processor

implementing | EEE Standard 7541 floati ng point operations. The FPU also provides afew additional operations not
defined by the |EEE standard.

This chapter provides an overview of the following FPU architectural details:

“Binary Compatibility” on page 69

“Enabling the Floating Point Coprocessor” on page 70
“|EEE Standard 754" on page 70

“FPU Data Types’ on page 70

“Floating Point Register Types’ on page 75

“Floating Point Control Registers (FCRS)” on page 78
“Formats of Values Used in FP Registers’ on page 88
“FPU Exceptions’ on page 88

“FPU Instructions’ on page 93

“Valid Operands for FPU Instructions’ on page 100

“FPU Instruction Formats’ on page 101

The FPU instruction set is summarized by functional group. Each instruction is also described individually in a pha-
betical order in Volumell.

5.1 Binary Compatibility

In addition to an Instruction Set Architecture, the MIPS architecture definition includes processing resources such as
the set of coprocessor general registers. In Release 1 of the Architecture, the 32-bit registersin MIPS32 were enlarged
to 64-bitsin M1PS64; however, these 64-bit FPU registers are not backwards compatible. Instead, processors imple-

menting the MIPS64 Architecture provide amode bit to select either the 32-bit or 64-bit register model. In Release 2

1. Inthischapter, referencesto “IEEE standard” and “|EEE Standard 754" refer to |EEE Standard 754-1985, “|EEE Standard
for Binary Floating Point Arithmetic.” For more information about this standard, see the | EEE web page at http://

grouper.ieee.org/groups/754/.

MIPS® Architecture For Programmers Volume I-A: Introduction to the MIPS64® Architecture, Revision 5.04

69

5.2 Enabling the Floating Point Coprocessor

of the Architecture and subsequent releases, a 32-bit CPU may include afull 64-bit coprocessor, including afloating
point unit which implements the same mode bit to select 32-bit or 64-bit FPU register model. As of Release 5 of the
Architecture, if floating point isimplemented then FR=1 isrequired. |.e. the 64-bit FPU, with the FR=1 64-hit FPU
register model, isrequired. The FR=0 32-bit FPU register model continues to be required.

Any processor implementing MIPS64 can also run MIPS32 binary programs, built for the same, or alower release of
the Architecture, without change.

5.2 Enabling the Floating Point Coprocessor

Enabling the Floating Point Coprocessor isdone by enabling Coprocessor 1, and isa privileged operation provided by
the System Control Coprocessor. |If Coprocessor 1 is not enabled, an attempt to execute a floating point instruction
causes a Coprocessor Unusable exception. Every system environment either enables the FPU automatically or pro-
vides ameans for an application to request that it is enabled.

5.3 IEEE Standard 754

|EEE Standard 754 defines the following:

* Floating point data types

» Thebasic arithmetic, comparison, and conversion operations

* A computational model

The | EEE standard does not define specific processing resources nor does it define an instruction set.

The MIPS architecture includes non-IEEE FPU control and arithmetic operations (multiply-add, reciprocal, and
reciprocal square root) which may not supply results that match the IEEE precision rules.

5.4 FPU Data Types

The FPU provides both floating point and fixed point data types, which are described in the next two sections.
» Thesingle and double precision floating point data types are those specified by the |EEE standard.
» Thefixed point types are signed integers provided by the CPU architecture.

5.4.1 Floating Point Formats

The following three floating point formats are provided by the FPU:

e 32-bit single precision floating point (type S, shown in Figure 5.1)

* 64-bit double precision floating point (type D, shown in Figure 5.2)

e 64-bit paired single floating point, combining two single precision data types (Type PS, shown in Figure 5.3)

The floating point data types represent numeric values as well as other special entities, such as the following:

MIPS® Architecture For Programmers Volume I-A: Introduction to the MIPS64® Architecture, Revision 5.04 70

Overview of the FPU Instruction Set

71

* Twoinfinities, +eo and -co
e Signaling non-numbers (SNaNs)
* Quiet non-numbers (QNaNs)s
« Numbers of the form: (-1)® 2 by.by by..by, 1, where
+ s0Oorl
e E=any integer between E_min and E_max, inclusive
* b=0o0r 1 (the high bit, by, isto the left of the binary point)
» pisthe signed-magnitude precision

Table 5.1 Parameters of Floating Point Data Types

Single (or each half
Parameter of Paired Single) Double
Bits of mantissa precision, p 24 53
Maximum exponent, E_max +127 +1023
Minimum exponent, E_min -126 -1022
Exponent bias +127 +1023
Bitsin exponent field, e 8 11
Representation of b integer bit hidden hidden
Bitsin fraction field, f 23 52
Total format width in bits 32 64

The single and double floating point data types are composed of three fields—sign, exponent, fraction—whose sizes
arelistedin Table 5.1.

Layouts of these fields are shown in Figures 5.1, 5.2, and 5.3 below. The fields are
 1-bitsign,s
» Biased exponent, e=E + bias

Binary fraction, f=.b; by..b, 1 (thebg bit is not recorded)

MIPS® Architecture For Programmers Volume I-A: Introduction to the MIPS64® Architecture, Revision 5.04

Figure 5.1 Single-Precisions Floating Point Format (S)

33 22
10 32 0
S| Exponent Fraction

1 8 23

Figure 5.2 Double-Precisions Floating Point Format (D)

5.4 FPU Data Types

66 55
32 21 0
S Exponent Fraction
1 11 52
Figure 5.3 Paired Single Floating Point Format (PS)
6 6 55 333 22
32 54 210 32 0
S| Exponent fraction S| Exponent Fraction
1 8 23 1 8 23
Values are encoded in the specified format by using unbiased exponent, fraction, and sign values listed in Table 5.2.
The high-order bit of the Fraction field, identified as b4, is also important for NaNs.
Table 5.2 Value of Single or Double Floating Point DataType Encoding
Typical Single
Unbiased E | f by Value V Type of Value Bit Pattern! | Typical Double Bit Pattern?
E max+1 #0 1 SNaN Signaling NaN Ox7Effffff Ox7EEfffff fEEELFFE
(Fl RHa52008=0 or
FCSRNAN2008=0)
0 QNaN Quiet NaN Ox7fbfffff Ox7EE£7ffff fEEELFFE
(Fl RH852008:0 or
FCSRnAN2008=0)
E max+1 #0 0 SNaN Signaling NaN Ox7fbfffff Ox7E£7ffff fEEELFFE
(FCSRnaN2008=1)
1 QNaN Quiet NaN Ox7fffffff Ox7fffffff fEEEf£f£E
(FCSRnaN200s=1)
E_max +1 0 - oo minus infinity 0x££800000 Ox£££00000 00000000
+ oo plus infinity 0x7£800000 0x7££00000 00000000
E_max - (29 negative normalized number 0x80800000 0x80100000 00000000
to through through
E_min Oxff7fffEff Oxffefffff ffffffff
+ (25(1f) | Positive normalized number 0x00800000 0x00100000 00000000
through through
Ox7f7ff£fff Ox7fefffff fffEffFfff
E_min-1 #0 - (2B-Mm0.f) |negative denormalized number | 0x807££fff Ox800fffff fEEffffff
+ (2E-Mmf) |positive denormalized number | 0x007£££££ OxQ00fffff fEffffff

MIPS® Architecture For Programmers Volume I-A: Introduction to the MIPS64® Architecture, Revision 5.04

72

Overview of the FPU Instruction Set

Table 5.2 Value of Single or Double Floating Point DataType Encoding (Continued)

Typical Single
UnbiasedE | f |s | b1 Value V Type of Value Bit Pattern! | Typical Double Bit Pattern®
E_min-l 0 1 -0 negativezero 0x80000000 0x80000000 00000000
0 +0 positivezero 0x00000000 0x00000000 00000000

1. The"Typical" nature of the bit patterns for the NaN and denormalized values reflects the fact that the sign may have either value (NaN)
and the fact that the fraction field may have any non-zero value (both). As such, the bit patterns shown are one value in a class of poten-
tial values that represent these special values.

5.4.1.1 Normalized and Denormalized Numbers

For single and double data types, each representable nonzero numerical value hasjust one encoding; numbers are
kept in normalized form. The high-order bit of the p-bit mantissa, which liesto the left of the binary point, is*hid-
den,” and not recorded in the Fraction field. The encoding rules permit the value of this bit to be determined by [ook-
ing at the value of the exponent. When the unbiased exponent isin the range E_min to E_max, inclusive, the number
isnormalized and the hidden bit must be 1. If the numeric value cannot be normalized because the exponent would be
lessthan E_min, then the representation is denormalized and the encoded number has an exponent of E_min-1 and the
hidden hit has the value 0. Plus and minus zero are special cases that are not regarded as denormalized values.

5.4.1.2 Reserved Operand Values—Infinity and NaN

A floating point operation can signal |EEE exception conditions, such as those caused by uninitialized variables, vio-
lations of mathematical rules, or results that cannot be represented. If a program does not choose to trap |EEE excep-
tion conditions, a computation that encounters these conditions proceeds without trapping but generates a result
indicating that an exceptional condition arose during the computation. To permit this, each floating point format
defines representations, listed in Table 5.2, for plus infinity (+e0), minus infinity (-e), quiet non-numbers (QNaN),
and signaling non-numbers (SNaN).

5.4.1.3 Infinity and Beyond

Infinity represents a number with magnitude too large to be represented in the format; in essence it exists to represent
amagnitude overflow during a computation. A correctly signed « is generated as the default result in division by zero
and some cases of overflow; details are given in the |EEE exception condition described in 5.8.1 “Exception
Conditions” on page 89.

Once created as a default result, - can become an operand in a subsequent operation. The infinities are interpreted
such that - < (every finite number) < +e. Arithmetic with « isthe limiting case of real arithmetic with operands of
arbitrarily large magnitude, when such limits exist. In these cases, arithmetic on « is regarded as exact and exception
conditions do not arise. The out-of-range indication represented by o is propagated through subsequent computa-
tions. For some cases there is no meaningful limiting case in real arithmetic for operands of -, and these cases raise
the Invalid Operation exception condition (see “Invalid Operation Exception” on page 90).

5.4.1.4 Signalling Non-Number (SNaN)

SNaN operands cause the Invalid Operation exception for arithmetic operations. SNaNs are useful valuesto put in
uninitialized variables. An SNaN is never produced as aresult value.

| EEE Standard 754 states that “Whether copying a signaling NaN without a change of format signals the Invalid
Operation exception is the implementor’s option.” The MIPS architecture has chosen to make the formatted operand
move instructions (MOV.fmt MOVT fmt MOVEfmt MOVN fmt MOV Z fmt) non-arithmetic and they do not signal
|EEE 754 exceptions.

73 MIPS® Architecture For Programmers Volume I-A: Introduction to the MIPS64® Architecture, Revision 5.04

5.4 FPU Data Types

5.4.1.5 Quiet Non-Number (QNaN)

QNaNs are intended to afford retrospective diagnostic information inherited from invalid or unavailable data and
results. Propagation of the diagnostic information requiresinformation contained in a QNaN to be preserved through
arithmetic operations and floating point format conversions.

QNaN operands do not cause arithmetic operations to signal an exception. When afloating point result isto be deliv-
ered, a QNaN operand causes an arithmetic operation to supply a QNaN result. When possible, this QNaN result is
one of the operand QNaN values. QNaNs do have effects similar to SNaNs on operations that do not deliver afloating
point result—specifically, comparisons. (For more information, see the detailed description of the floating point com-
pare instruction, C.cond.fmt.)

When certain invalid operations not involving QNaN operands are performed but do not trap (because the trap is not
enabled), anew QNaN valueis created. Table 5.3 shows the QNaN value generated when no input operand QNaN

value can be copied. The values listed for the fixed point formats are the values supplied to satisfy the |EEE standard
when a QNaN or infinite floating point value is converted to fixed point. Thereis no other feature of the architecture
that detects or makes use of these “integer QNaN” values. The FCSRyan2008=1 “integer QNAN” values were chosen

to match the requirements of the Java and Fortran programming languages.

Table 5.3 Value Supplied When a New Quiet NaN Is Created

New QNaN value (FIRyas2008 New QNaN value
Format =0 or FCSRyaN2008 = 0) (FCSRnaN2008 = 1)
Single floating point O0x7fbf ffff 0x7fc0 0000

Doublefloating point | 0x7£f7 £fff ffff ffff 0x7f£8 0000 0000 0000

Word fixed point Ox7fff ffff O0x7fff ffff
(result from converting
any FP number too big
to represent as a 32-bit
positive integer)

Word fixed point Ox7fff ffff 0x0000 0000
(result from converting

any FP NAN)

Word fixed point O0x7fff ffff 0x8000 0000

(result from converting
any FP number too

small to represent asa
32-bit negative integer)

Longword fixed point | Ox7fff £fff ffff ffff Ox7fff ffff ffff ffff
(result from converting
any FP number too big
to represent as a 64-bit
positive integer)

Longword fixed point | Ox7£ff £fff ffff ffff 0x0000 0000 0000 0000
(result from converting
any FP NAN)

Longword fixed O0x7fff ffff ff£ff ffff 0x8000 0000 0000 0000
point(result from con-
verting any FP number
too small to represent
as a 64-bit negative
integer)

MIPS® Architecture For Programmers Volume I-A: Introduction to the MIPS64® Architecture, Revision 5.04 74

Overview of the FPU Instruction Set

If a CPU implements passing an input NAN operand to the output of an instruction in hardware (instead of taking an
Unimplemented FP exception) and FCSRyan2008=1, the mantissa portion of the input NAN operand is preserved as

much as possible:
» |If thechosen input isa QNAN, the entire mantissa is passed to the output without change.
e |f thechosen input isa SNAN, the only changeis to set the leftmost/most-significant mantissa bit.
5.4.1.6 Paired Single Exceptions
Exception conditions that arise while executing the two halves of afloating point vector operation are ORed together,

and the instruction is treated as having caused all the exceptional conditions arising from both operations. The hard-
ware makes no effort to determine which of the two operations encountered the exceptional condition.

5.4.1.7 Paired Single Condition Codes
The c.cond.PS instruction compares the upper and lower halves of FPR fs and FPR ft independently and writes the

results into condition codes CC +1 and CC respectively. The CC number must be even. If the number is not even the
operation of the instruction is UNPREDICTABLE.

5.4.2 Fixed Point Formats

The FPU provides two fixed point data types:

e 32-bit Word fixed point (type W), shown in Figure 5.4

» 64-bit Longword fixed point (type L), shown in Figure 5.5

The fixed point values are held in the 2's complement format used for signed integers in the CPU. Unsigned fixed
point data types are not provided by the architecture; application software may synthesize computations for unsigned

integers from the existing instructions and data types.

Figure 5.4 Word Fixed Point Format (W)

=W
o w
o

Integer
31

=L»

Figure 5.5 Longword Fixed Point Format (L)

w o
N O
o

Integer
63

Ll B ¥5)

5.5 Floating Point Register Types
This section describes the organization and use of the two types of FPU register sets:

75 MIPS® Architecture For Programmers Volume I-A: Introduction to the MIPS64® Architecture, Revision 5.04

5.5 Floating Point Register Types

In Release 1 of the Architecture, 64-bit floating point units were supported only by implementations of the M1PS64
Architecture. Similarly, implementations of M1PS32 of the Architecture only supported 32-bit floating point units. In
Release 2 of the Architecture and MI1PSr3, a 64-bit floating point unit is supported on implementations of both the
MIPS32 and MIPS64 Architectures. As of Release 5 of the Architecture, if floating point isimplemented then FR=1
isrequired. |.e. the 64-bit FPU, with the FR=1 64-bit FPU register model, is required. The FR=0 32-bit FPU register
model continues to be required.

Floating Point registers (FPRS) are 32 or 64 bitswide. A 32-hit floating point unit contains 32 32-bit FPRs, each of
which is capable of storing a 32-bit data type. Double-precision (type D) datatypes are stored in even-odd pairs of
FPRs, and the long-integer (type L) and paired single (type PS) data types are not supported. A 64-bit floating point
unit contains 32 64-bit FPRs, each of which is capable of storing any data type. For compatibility with 32-bit FPUs,
the FR bit in the CPO Status register is used by a MIPS64 Release 1, or any Release 2 or subsequent releases proces-
sor that supports a 64-bit FPU to configure the FPU in amode in which the FPRs are treated as 32 32-bit registers,
each of which is capable of storing only 32-bit data types. In this mode, the double-precision floating point (type D)
datatypeis stored in even-odd pairs of FPRs, and the long-integer (type L) and paired single (type PS) data types are
not supported.

* Theseregisterstransfer binary data between the FPU and the system, and are also used to hold formatted FPU
operand values. Refer to Volume 111, The MIPS Privileged Architecture Manual, for more information on the CPO
Registers.

* Floating Point Control registers (FCRs), which are 32 bits wide. There are five FPU control registers, used to

identify and control the FPU. These registers are indicated by the fsfield of the instruction word. Three of these
registers, FCCR, FEXR, and FENR, select subsets of the floating point Control/Status register, the FCSR.

5.5.1 FPU Register Models

There are separate FPU register modelsin Release 1 of the Architecture:
* MIPS32 defines 32 32-bit registers, with D-format values stored in even-odd pairs of registers.
» MIPS64 defines 32 64-bit registers, with al formats supported in aregister.

To support MIPS32 programs, MIPS64 processors a so provide the MIPS32 register model, which is available asa
mode selection through the FR Bit of the CPO Status Register.

If the value of FR bit is changed, the contents of the FPRs becomes UNPREDICTABL E. For someimplementations,
it might be necessary for software to re-initialize the FPRs.

In Release 2 of the Architecture and subsequent rel eases, both FPU register model s are available for implementations,
and the FR hit of the CPO Status Register.

As of Release 5 of the Architecture, if floating point isimplemented then FR=1 isrequired. |.e. the 64-bit FPU, with
the FR=1 64-bit FPU register model, is required. The FR=0 32-bit FPU register model continuesto be required.

5.5.2 Binary Data Transfers (32-Bit and 64-Bit)

The data transfer instructions move words and doublewords between the FPU FPRs and the remainder of the system.
The operations of the word and doubleword load and move-to instructions are shown in Figure 5.6 and Figure 5.7.

The store and move-from instructions operate in reverse, reading data from the location which the corresponding load
or move-to instruction wrote.

MIPS® Architecture For Programmers Volume I-A: Introduction to the MIPS64® Architecture, Revision 5.04 76

Overview of the FPU Instruction Set

77

Figure 5.6 FPU Word Load and Move-to Operations

FRBIT =1 FRBIT=0
63 0 63 0
Reg 0 Initial value 1 Reg 0 Initial value 1
Reg 1 Initial value 2 Reg 2 Initial value 2
' Lwci fo, 0(x0) / MTC1 f0,r0 l
63 0 63 0
Reg 0 | Undefined/Unused | Data word (0) Reg 0 | Undefined/Unused | Data word (0)
Reg 1 Initial value 2 Reg 2 Initial value 2
Lwci f1, 4(rx0) / MTC1 f1,r4 l
63 0 63 0
Reg 0 | Undefined/Unused Data word (0) Reg 0 Data word (4) | Data word (0)
Reg 1 | Undefined/Unused Data word (4) Reg 2 Initial value 2

Figure 5.7 FPU Doubleword Load and Move-to Operations

FRBIT =1 FRBIT=0
63 0 63 0
Reg 0 Initial value 1 Reg 0 Initial value 1 |
Reg 1 Initial value 2 Reg 2 Initial value 2 I
l LDC1 f0, 0(x0) / DMTC1 fO,xrO j
63 0 63 0
Reg 0 Data doubleword (0) Reg 0 Data doubleword (0) I
Reg 1 Initial value 2 Reg 2 Initial value 2 I
l LDC1 f1, 8(x0) / DMTC1 f1,r8
63 0

Reg 0 Data doubleword (0) .
(Illegal when FP32RegistersMode = 0)
Reg 1 Data doubleword (8)
5.5.3 FPRs and Formatted Operand Layout

FPU instructions that operate on formatted operand values specify the floating point register (FPR) that holds the
value. Operands that are only 32 bits wide (W and S formats), use only half the space in a 64-bit FPR.

The FPR organization and the way that operand data is stored in them is shown in Figures 5.8, 5.9 and 5.10.

MIPS® Architecture For Programmers Volume I-A: Introduction to the MIPS64® Architecture, Revision 5.04

5.6 Floating Point Control Registers (FCRs)

Figure 5.8 Single Floating Point or Word Fixed Point Operand in an FPR
63 32 31 0

Reg 0 | Undefined/Unused | Data word I

Figure 5.9 Double Floating Point or Longword Fixed Point Operand in an FPR
63 0

Reg 0 | Data doubleword/Longword I

Figure 5.10 Paired-Single Floating Point Operand in an FPR
63 32 31 0

Reg 0| Paired-Single | Paired-Single I

5.6 Floating Point Control Registers (FCRs)

Access to the Floating Point Control Registers is not privileged; they can be accessed by any program that can execute
floating point instructions. The FCRs can be accessed via the CTC1 and CFC1 instructions.

The MIPS64 Architecture supports the following floating point Control registers (FCRs):

* FIR, FP Implementation and Revision register

» FCSR. FP Control/Status register (used to be known as FCR37).

The following FCRs are “aliases”, accessing subsets of the FCSR through CTC1 and CFC1 instructions.
» FCCR. FP Condition Codes register

* FEXR, FP Exceptions register

* FENR. FP Enables register

Release 5 of the Architecture adds additional “alias” FCRs:

* UFR and UNFR for user-mode access to Statusgg. See CTC1, CFC1 for Release 5 related changes.
5.6.1 Floating Point Implementation Register (FIR, CP1 Control Register 0)

Compliance Level: Required if floating point is implemented
The Floating Point Implementation Register (F/R) is a 32-bit read-only register that contains information identifying

the capabilities of the floating point unit, the floating point processor identification, and the revision level of the float-
ing point unit. Figure 5.11 shows the format of the F/R register; Table 5.4 describes the FIR register fields.

MIPS® Architecture For Programmers Volume I-A: Introduction to the MIPS64® Architecture, Revision 5.04 78

Overview of the FPU Instruction Set

Figure 5.11 FIR Register Format

31 29 28 27 24 23 22 21 20 19 18 17 16 15 8 7
O |urrP| Impl Has Teesl L lw (3D |PS| D | s Processor|D Revision
000 2008
Table 5.4 FIR Register Field Descriptions
Fields
Read/
Name Bits Description Write Reset State | Compliance
0 31:28 | Reserved for future use; reads as zero 0 0 Reserved
UFRP 28 See Release 5 definition of CFC1 and CTCL1. R Preset Optional
(Release 5)
Encoding Meaning
0 User mode FR switching instructions
not supported.
1 User mode FR switching instructions
supported.
Impl 27..24 | These bits are implementation dependent and are not R Preset Optional
defined by the architecture, other than the fact that they are
read-only. This bits are explicitly not intended to be used
for mode control functions.
Has2008 23 Indicates that one or more | EEE-754-2008 features are R Preset by hard- | Optional as of
implemented. If this bit is set, the ABS2008 and ware Release 3.
NAN2008 fields within the FCSR register also exist. Required as of
Release 5.
F64 22 Indicates that the floating point unit has registers and data R Preset by hard- Required
paths that are 64-bits wide. This bit was added in Release ware (Release 2)
2 of the Architecture, and is one on any processors with a
64-bit floating point unit, and zero on any processors with
a 32-hit floating point unit. A value of onein this bit indi-
cates that Statusgg isimplemented.
Encoding Meaning
0 FPU is 32 bits
1 FPU is 64 bits
L 21 Indicates that the longword fixed point (L) data type and R Preset by hard- Required
instructions are implemented: ware (Release 2)
Encoding Meaning
0 L fixed point not implemented
1 L fixed point implemented
79 MIPS® Architecture For Programmers Volume I-A: Introduction to the MIPS64® Architecture, Revision 5.04

5.6 Floating Point Control Registers (FCRSs)

Table 5.4 FIR Register Field Descriptions (Continued)

Fields
Read/
Name Bits Description Write Reset State | Compliance
w 20 Indicates that the word fixed point (W) data type and R Preset by hard- Required
instructions are implemented: ware (Release 2)
Encoding Meaning
0 W fixed point not implemented
1 W fixed point implemented
3D 19 the MIPS-3D ASE is supported on any processors with a R Preset by hard- Required
64-hit floating point unit, and this bit indicates that the ware
MIPS-3D ASE isimplemented:
Encoding Meaning
0 MIPS-3D ASE not implemented
1 MIPS-3D ASE implemented
Indicates that the MIPS-3D ASE isimplemented:
Encoding Meaning
0 MIPS-3D ASE not implemented
1 MIPS-3D ASE implemented
PS 18 tindicates that the paired single floating point datatypeis R Preset by hard- Required
implemented: ware
Encoding Meaning
0 PS floating point not implemented
1 PS floating point implemented
D 17 Indicates that the double-precision (D) floating point data R Preset by hard- Required
type and instructions are implemented: ware
Encoding Meaning
0 D floating point not implemented
1 D floating point implemented
S 16 Indicates that the single-precision (S) floating point data R Preset by hard- Required
type and instructions are implemented: ware
Encoding Meaning
0 Sfloating point not implemented
1 Sfloating point implemented
Processor|D 15:8 Identifies the floating point processor. R Preset by hard- Required
ware
MIPS® Architecture For Programmers Volume I-A: Introduction to the MIPS64® Architecture, Revision 5.04 80

Overview of the FPU Instruction Set

Table 5.4 FIR Register Field Descriptions (Continued)

Fields
Read/
Name Bits Description Write Reset State | Compliance
Revision 7.0 Specifies the revision number of the floating point unit. R Preset by hard- Optional
Thisfield alows software to distinguish between one revi- ware
sion and another of the same floating point processor type.
If thisfield is not implemented, it must read as zero.

5.6.2 User Floating point Register mode control (UFR, CP1 Control Register 1)

31

Compliance Level: Optional in MIPS64r5 if floating point isimplemented and user-mode FR switching is sup-
ported

The UFR register allows user-mode to clear Statusgg by executing a CTC1 to UFR with GPR[0] as input, and read
Satusgr. by executing a CFC1 to UFR. CTC1 to UFR with any other input register is required to produce a Reserved
Instruction Exception. User-mode software can determine presence of this feature from FIR grp

Per the definition of the CTCL instruction, writing any value other than 0 obtained from integer GPR[0] to UFR using
the CTC1 instruction is UNPREDICTABLE. To set UFR.FR / Statusgg use CTC1 to the UNFR FCR dlias.

Figure 5.12 UFR Register Format

0 FR
Table 5.5 UFR Register Field Descriptions
Fields
Read/
Name Bits Description Write Reset State | Compliance
0 31:1 Must be written as zero; returns zero on read 0 0 Reserved
FR 0 User-mode access to Statusgg. R/WOg! Undefined Optional
(Release 5)
See reset state
of Satuscr

81

1. R/WO0g definition: UFR can read as 0 or 1, but can only be written with the zero from GPR[0], which clearstatusgg . Using CTC1
to write UFR with any value or GPR other than GPR[0] is UNPREDICTABLE.

5.6.3 User Negated Floating point Register mode control (UNFR, CP1 Control Regis-
ter 4)

Compliance Level: Optional in MIPS64r5 if floating point isimplemented and user-mode FR switching is sup-
ported

The UNFR register allows user-mode to set Statusgg by executing a CTC1 to UNFR with GPR[0] asinput. CTC1 to

UNFR with any other input register is required to produce a Reserved Instruction Exception. User-mode software can
determine presence of this feature from FIR grp

MIPS® Architecture For Programmers Volume I-A: Introduction to the MIPS64® Architecture, Revision 5.04

5.6 Floating Point Control Registers (FCRSs)

Figure 5.13 UNFR Register Format
31 1 0

0 NFR

Table 5.6 UNFR Register Field Descriptions

Fields
Read/
Name Bits Description Write Reset State | Compliance
0 31:1 | Must bewritten as zero. 0 n.a2 Reserved
NFR 0 User-mode inverted write to Statusgg. wot n.a2 Optional
(Release 5)

1. WO0g defintion: UNFR can only be written with the zero from GPR[0], which sets Statuseg. Using CFCL1 to reasd UNFR, or using
CTC1towrite UNFR with any value or GPR other than GPR[0] isUNPREDICTABLE. UNFR's"“state” can beinferred by reading
Satuseg, €.9. viaUFR.

2. UNFR’sreset stateis “n.a” (not applicable), since UNFR is not readabl e state.

The UNFR pseudo-control-register aliasis a convenience, alowing CTC1 RO, UNFR to be used to set UFR/Satuseg.
without requiring a GPR to hold the value such as 1 to be written. Because reading UNFR would be redundant with
reading UFR, UNFR iswrite-only; attempting to read UNFR via CFC1 is UNPREDICTABLE, per the definition of

the CFC1 instruction. Writing any value other than O obtained from integer GPR RO to UNFR using the CTC1
instruction is similarly UNPREDICTABLE from software’s point of view, and is required to produce a Reserved
Instruction Exception in R5.03 implementations.

5.6.4 Floating Point Control and Status Register (FCSR, CP1 Control Register 31)

Compliance L evel: Required if floating point isimplemented.

The Floating Point Control and Status Register (FCSR) is a 32-bit register that controls the operation of the floating

point unit, and shows the following status information:

» selectsthe default rounding mode for FPU arithmetic operations

» selectively enables traps of FPU exception conditions

» controls some denormalized number handling options

* reports any |EEE exceptions that arose during the most recently executed instruction
» reports |[EEE exceptions that arose, cumulatively, in completed instructions

» indicates the condition code result of FP compare instructions

Accessto FCSR is not privileged; it can be read or written by any program that has access to the floating point unit

(viathe coprocessor enablesin the Status register). Figure 5.14 shows the format of the FCSR register; Table 5.7

describes the FCSR register fields.

MIPS® Architecture For Programmers Volume I-A: Introduction to the MIPS64® Architecture, Revision 5.04

82

Overview of the FPU Instruction Set

31 30 29 28 27 26 25 24 23

Figure 5.14 FCSR Register Format

22 21 20 19 18

17 16 15 14 13 12 11 10 9

8 7 6 5

4 3 2 1 O

FCC

0 |ABS|NAN

FS 0 | 2008 | 2008

FCC| Impl Cause

Enables

Flags RM

7‘6‘5‘4‘3‘2‘1

0 E‘V‘Z‘O‘U‘I

V‘Z‘O‘U‘I

v‘z

[o]V]!

Table 5.7 FCSR Register Field Descriptions

Fields

Name

Bits

Description

Read/
Write

Reset State

Compliance

FCC

31:25, 23

Floating point condition codes. These bitsrecord the result
of floating point compares and are tested for floating point
conditional branches and conditional moves. The FCC bit
to useis specified in the compare, branch, or conditional
move instruction. For backward compatibility with previ-
ous MIPS |SAs, the FCC hits are separated into two, non-
contiguous fields.

R/W

Undefined

Required

FS

24

Flush to Zero (Flush Subnormals).

See sections 5.8.1.3 “Underflow Exception” on page 91
and 5.8.1.4 “Alternate Flush to Zero Underflow
Handling” on page 92.

Encoding Meaning

0 Input subnormal values and tiny non-
zero results are not altered. Unimple-
mented Operation Exception may be
signaled as needed.

1 When FSis one, subnormal results are
flushed to zero. The Unimplemented
Operation Exception is NOT signalled
for this reason.

Every tiny non-zero result is
replaced with zero of the same sign.

Prior to Release 5 it isimplementa-
tion dependent whether subnormal
operand values are flushed to zero
before the operation is carried out.

As of Release 5 every input subnor-
mal value is replaced with zero of the
same sign.

RIW

Undefined

Required

Impl

22:21

Available to control implementation dependent features of
the floating point unit. If these bits are not implemented,
they must be ignored on write and read as zero.

R/W

Undefined

Optional

20

Reserved for future use; reads as zero.

Preset by hard-
ware

Reserved

83

MIPS® Architecture For Programmers Volume I-A: Introduction to the MIPS64® Architecture, Revision 5.04

5.6 Floating Point Control Registers (FCRSs)

Table 5.7 FCSR Register Field Descriptions (Continued)

Fields

Name

Bits

Description

Read/
Write

Reset State

Compliance

ABS2008

19

ABS fmt & NEG.fmt instructions compliant with |EEE
Standard 754-2008.

The |EEE 754-2008 standard requires that the ABS and
NEG functions are non-arithmetic and accept NAN inputs
without trapping.

Thisfields exists if FIRyasp008 IS SEt-

Encoding Meaning

0 ABS & NEG ingtructions are arith-
metic and trap for NAN input. MIPS
legacy behavior.

1 ABS & NEG instructions are non-
arithmetic and accept NAN input with-
out trapping. |EEE 754-2008 behavior

R

Preset by hard-
ware

Required as of
Release 5

NAN2008

18

Quiet and signaling NaN encodings recommended by the
|EEE Standard 754-2008, i.e. aquiet NaN is encoded with
thefirst bit of the fraction being 1 and asignaling NaN is
encoded with the first bit of the fraction field being 0.
MIPS legacy FPU encodes NaN values with the opposite
polarity, i.e. aquiet NaN isencoded with thefirst bit of the
fraction being 0 and asignaling NaN is encoded with the
first bit of the fraction field being 1.

Refer to Table 5.3 for the quiet NaN encoding values.

Encoding Meaning

0 MIPS legacy NaN encoding
1 |EEE 754-2008 NaN encoding

Preset by hard-
ware

Required as of
Release 5

Cause

17:12

Cause bits. These bits indicate the exception conditions
that arise during execution of an FPU arithmetic instruc-
tion. A bitisset to 1 if the corresponding exception condi-
tion arises during the execution of an instruction and is set
to 0 otherwise. By reading the registers, the exception con-
dition caused by the preceding FPU arithmetic instruction
can be determined.

Refer to Table 5.8 for the meaning of each hit.

R/W

Undefined

Required

MIPS® Architecture For Programmers Volume I-A: Introduction to the MIPS64® Architecture, Revision 5.04

84

Overview of the FPU Instruction Set

Table 5.7 FCSR Register Field Descriptions (Continued)

Fields
Read/
Name Bits Description Write Reset State | Compliance
Enables 11.7 Enable bits. These bits control whether or not a exception R/W Undefined Required

istaken when an | EEE exception condition occurs for any
of the five conditions. The exception occurs when both an
Enable bit and the corresponding Cause bit are set either
during an FPU arithmetic operation or by moving avalue
to FCSR or one of its alternative representations. Note that
Cause bit E has no corresponding Enable bit; the non-
IEEE Unimplemented Operation exception is defined by
MIPS as always enabled.

Refer to Table 5.8 for the meaning of each bit.

Flags 6:2 Flag bits. Thisfield shows any exception conditions that R/W Undefined Required
have occurred for completed instructions since the flag
was last reset by software.

When a FPU arithmetic operation raises an | EEE excep-
tion condition that does not result in a Floating Point
Exception (i.e., the Enable bit was off), the corresponding
bit(s) in the Flag field are set, while the others remain
unchanged. Arithmetic operations that result in a Floating
Point Exception (i.e., the Enable bit was on) do not update
the Flag bits.

Thisfield is never reset by hardware and must be explic-
itly reset by software.

Refer to Table 5.8 for the meaning of each bit.

RM 1:0 Rounding mode. This field indicates the rounding mode R/W Undefined Required.
used for most floating point operations (Some operations
use a specific rounding mode).

Refer to Table 5.9 for the meaning of the encodings of this
field.

The FCC, FS, Cause, Enables, Flagsand RM fieldsinthe FCSR, FCCR, FEXR, and FENR registers always display
the correct state. That is, if afield iswritten viaFCCR, the new value may be read via one of the alternate registers.
Similarly, if avalue iswritten via one of the aternate registers, the new value may be read via FCSR.

Table 5.8 Cause, Enable, and Flag Bit Definitions

Bit Name Bit Meaning
E Unimplemented Operation (this bit exists only in the
Cause field)
\% Invalid Operation
z Divide by Zero
(0] Overflow
U Underflow
| Inexact

85 MIPS® Architecture For Programmers Volume I-A: Introduction to the MIPS64® Architecture, Revision 5.04

Table 5.9 Rounding Mode Definitions

RM Field
Encoding Meaning
0 RN - Round to Nearest
Rounds the result to the nearest representable value. When two representable values are equally
near, the result is rounded to the value whose least significant bit is zero (that is, even)
1 RZ - Round Toward Zero
Rounds the result to the value closest to but not greater than in magnitude than the resullt.
2 RP - Round Towards Plus Infinity
Rounds the result to the value closest to but not less than the result.
3 RM - Round Towards Minus I nfinity

Rounds the result to the value closest to but not greater than the resullt.

5.6.5 Floating Point Condition Codes Register (FCCR, CP1 Control Register 25)

Compliance Level: Required if floating point isimplemented.

5.6 Floating Point Control Registers (FCRSs)

The Floating Point Condition Codes Register (FCCR) is an alternative way to read and write the floating point condi-
tion code values that also appear in FCSR. Unlike FCSR, al eight FCC bits are contiguous in FCCR. Figure 5.15
shows the format of the FCCR register; Table 5.10 describes the FCCR register fields.

31

Figure 5.15 FCCR Register Format

0
0000 0000 0000 0000 0000 0000 FCC

7‘6‘5‘4‘3‘2‘1‘0

Table 5.10 FCCR Register Field Descriptions

Fields
Read/
Name Bits Description Write Reset State | Compliance
0 31:8 Must be written as zero; returns zero on read 0 0 Reserved
FCC 7.0 Floating point condition code. Refer to the description of R/W Undefined Required
thisfield in the FCSR register.

5.6.6 Floating Point Exceptions Register (FEXR, CP1 Control Register 26)

Compliance Level: Required if floating point isimplemented.

The Floating Point Exceptions Register (FEXR) isan alternative way to read and write the Cause and Flags fiel ds that
also appear in FCSR. Figure 5.16 shows the format of the FEXR register; Table 5.11 describes the FEXR register
fields.

MIPS® Architecture For Programmers Volume I-A: Introduction to the MIPS64® Architecture, Revision 5.04

86

Overview of the FPU Instruction Set

Figure 5.16 FEXR Register Format

31 18 17 16 15 14 13 12 11 7 6 5 4 3 2 1 0

0 Cause 0 Flags 0

0000 0000 0000 00 00 000 00
E|V|Z|O|U|I V‘Z‘O‘U‘I

Table 5.11 FEXR Register Field Descriptions

Fields
Read/
Name Bits Description Write Reset State | Compliance
0 31:18, | Must bewritten as zero; returns zero on read 0 0 Reserved
11:7, 1.0
Cause 17:12 | Cause bits. Refer to the description of thisfield in the R/W Undefined Required
FCSR register.
Flags 6:2 Flags bits. Refer to the description of thisfield in the R/W Undefined Optional
FCSR register.

5.6.7 Floating Point Enables Register (FENR, CP1 Control Register 28)

Compliance L evel: Required if floating point isimplemented.
The Floating Point Enables Register (FENR) is an aternative way to read and write the Enables, FS, and RM fields

that also appear in FCSR. Figure 5.17 shows the format of the FENR register; Table 5.12 describes the FENR regis-
ter fields.

87 MIPS® Architecture For Programmers Volume I-A: Introduction to the MIPS64® Architecture, Revision 5.04

5.7 Formats of Values Used in FP Registers

Figure 5.17 FENR Register Format
31 12 11 10 9 8 7 6 3 2 1 0
0 Enables 0 FS| RM
0000 0000 0000 0000 0000 0000
v | z | o) | U | I
Table 5.12 FENR Register Field Descriptions
Fields
Read/
Name Bits Description Write Reset State | Compliance
0 31:12, 6:3 | Must be written as zero; returns zero on read 0 0 Reserved
Enables 11.7 Enable bits. Refer to the description of thisfield in the R/W Undefined Required
FCSR register.
FS 2 Flush to Zero bit. Refer to the description of thisfield in R/W Undefined Required
the FCSR register.
RM 1.0 Rounding mode. Refer to the description of thisfield in R/W Undefined Required
the FCSR register.

5.7 Formats of Values Used in FP Registers

Unlike the CPU, the FPU does not interpret the binary encoding of source operands nor produce a binary encoding of
results for every operation. The value held in afloatig point register (FPR) is either uninterpreted, or one one of the
valid numeric formats: single, double, paired-single floating-point, word and long fixed point.

The valuein aFPR is set to one of these formats when the register is written:

* When adatatransfer instruction writes binary datainto a FPR (LWC1, LWXC1, LDC1, LDXC1, LUXC1,
MTC1, MTHC1, DMTC1), then the binary value of the register is uninterpreted.

* A FPcomputational or FP register move (MOV*.fmt) instruction which produces aresult of type fmt putsavalue
of type fmt into the result register.

» Theformat of the value of a FPR is unchanged when it is read by data transfer instruction (SWC1, SWXC1,
SDC1, SDXC1, SUXC1, MFC1, MFHC1, DMFC1).

When an FPR with an uninterpreted value is used as a source operand by an instruction that requires avalue of format
fmt, the binary contents are interpreted as a value of format fmt. A FP arithmetic instruction produces a value of the
expected numeric format into the destination register.

If an FPR contains a value of numeric format fmt and an instruction uses the FPR as source operand of different
numeric format, the result of the instruction is UNPREDICTABLE.

5.8 FPU Exceptions

This section provides the following information FPU exceptions:
* Precise exception mode

» Descriptions of the exceptions

MIPS® Architecture For Programmers Volume I-A: Introduction to the MIPS64® Architecture, Revision 5.04 88

Overview of the FPU Instruction Set

89

¢ Non-Arithmetic Instructions

FPU exceptions are implemented in the MIPS FPU architecture with the Cause, Enable, and Flag fields of the Con-
trol/Satus register. The Flag bits implement |EEE exception status flags, and the Cause and Enable bits control
exception trapping. Each field has a bit for each of the five |EEE exception conditions and the Cause field has an
additional exception bit, Unimplemented Operation, used to trap for software emulation assistance.

5.8.0.1 Precise Exception Mode

In precise exception mode, atrap occurs before the instruction that causes the trap, or any following instruction, can
complete and writeitsresults. If desired, the software trap handler can resume execution of the interrupted instruction
stream after handling the exception.

The Cause field reports per-bit instruction exception conditions. The Cause hits are written during each floating point
arithmetic operation to show any exception conditions that arise during the operation. The bit is set to 1 if the corre-
sponding exception condition arises; otherwiseit isset to 0.

A floating point trap is generated any time both a Cause bit and its corresponding Enable bit are set. This occurs
either during the execution of afloating point operation or by moving avalueinto the FCSR. There is no Enable for
Unimplemented Operation; this exception always generates a trap.

In atrap handler, exception conditions that arise during any trapped floating point operations are reported in the
Cause field. Before returning from afloating point interrupt or exception, or before setting Cause bits with amove to
the FCSR, software must first clear the enabled Cause hits by executing amoveto FCSR to prevent the trap from
being erroneously retaken.

User-mode programs cannot observe enabled Cause bits being set. If thisinformation isrequired in a User-mode han-
dler, it must be available someplace other than through the Satus register.

If afloating point operation sets only non-enabled Cause bits, no trap occurs and the default result defined by the
|EEE standard is stored (see Table 5.13). When a floating point operation does not trap, the program can monitor the
exception conditions by reading the Cause field.

The Flag field is a cumulative report of |EEE exception conditions that arise as instructions compl ete; instructions
that trap do not update the Flag bits. The Flag bits are set to 1 if the corresponding IEEE exception is raised, other-
wise the bits are unchanged. There is no Flag bit for the MI1PS Unimplemented Operation exception. The Flag bits
are never cleared as a side effect of floating point operations, but may be set or cleared by moving anew value into the
FCSR.

Addressing exceptions are precise.

5.8.1 Exception Conditions

The following five exception conditions defined by the |EEE standard are described in this section:
* Invalid Operation Exception

» Division By Zero Exception

* Underflow Exception

» Overflow Exception

MIPS® Architecture For Programmers Volume I-A: Introduction to the MIPS64® Architecture, Revision 5.04

5.8 FPU Exceptions

* Inexact Exception

This section also describes a MIPS-specific exception condition, Unimplemented Oper ation, that isused to signal a
need for software emulation of an instruction. Normally an |EEE arithmetic operation can cause only one exception
condition; the only case in which two exceptions can occur at the same time are Inexact With Overflow and Inexact
With Underflow.

At the program’s direction, an | EEE exception condition can either cause atrap or not cause atrap. The |EEE stan-
dard specifies the result to be delivered in case the exception is not enabled and no trap is taken. The MIPS architec-
ture supplies these results whenever the exception condition does not result in a precise trap (that is, no trap or an
imprecise trap). The default action taken depends on the type of exception condition, and in the case of the Overflow,
the current rounding mode. The default results are summarized in Table 5.13.

Table 5.13 Default Result for IEEE Exceptions Not Trapped Precisely

Bit Description Default Action
\% Invalid Operation | Supplies aquiet NaN.
z Divide by zero | Supplies a properly signed infinity.
U Underflow Supplies arounded result.
| Inexact Supplies arounded result. If caused by an overflow without the overflow trap enabled, sup-
plies the overflowed result.
(0] Overflow Depends on the rounding mode, as shown below.
0 (RN) Supplies an infinity with the sign of the intermediate resullt.
1(R2) Suppliesthe format’s largest finite number with the sign of the intermediate result.
2 (RP) For positive overflow values, supplies positive infinity. For negative overflow values, supplies

the format’s most negative finite number.

3 (RM) For positive overflow values, supplies the format’s largest finite number. For negative over-
flow values, supplies minusinfinity.

5.8.1.1 Invalid Operation Exception

The Invalid Operation exception is signaled if one or both of the operands are invalid for the operation to be per-
formed. The result, when the exception condition occurs without a precise trap, isa quiet NaN.

These are invalid operations:

* Oneor both operands are asignaling NaN (except for the non-arithmetic MOV fmt, MOV T.fmt, MOV F.fmt,
MOVN.fmt, and MOV Z fmt instructions).

e Addition or subtraction: magnitude subtraction of infinities, such as (+eo) + (-e0) OF (-e0) - (o).
* Multiplication: 0 x e, with any signs.

» Division: 0/0 or o/, with any signs.

* Squareroot: An operand of lessthan O (-0 isavalid operand value).

» Conversion of afloating point number to afixed point format when either an overflow or an operand value of
infinity or NaN precludes afaithful representation in that format.

MIPS® Architecture For Programmers Volume I-A: Introduction to the MIPS64® Architecture, Revision 5.04 90

Overview of the FPU Instruction Set

91

* Some comparison operations in which one or both of the operandsis a QNaN value. (The detailed definition of
the compare instruction, C.cond.fmt, in Volume Il has tables showing the comparisons that do and do not signal
the exception.)

5.8.1.2 Division By Zero Exception

An implemented divide operation signals a Division By Zero exception if the divisor is zero and the dividend isa
finite nonzero number. The result, when no precise trap occurs, isa correctly signed infinity. Divisions (0/0) and (=-/0)
do not cause the Division By Zero exception. Theresult of (0/0) isan Invalid Operation exception. The result of (o</0)
isacorrectly signed infinity.

5.8.1.3 Underflow Exception

This section describes | EEE standard compliant underflow exception handling, desired when FCSR.FS=0. Some
implementations may require software assistance to accomplish this, via the Unimplemented Operation Exception
handler. See the next section, 5.8.1.4, for Alternate Flush to Zero Underflow Handling, obtained by setting
FCSR.FS=1, which may be faster on some implementations.

Two related events contribute to underflow:

» Tininess: the creation of atiny nonzero result between +2EMN \which, becauseit isti ny, may cause some other
exception later such as overflow on division

» Lossof accuracy: the extraordinary loss of accuracy during the approximation of such tiny numbers by denor-
malized numbers

Tininess. The |EEE standard allows choices in detecting these events, but requires that they be detected in the same
manner for all operations. The | EEE standard specifies that “tininess’ may be detected at either of these times:

» After rounding, when anonzero result computed as though the exponent range were unbounded would lie strictly
between +25-Mn

» Before rounding, when anonzero result computed as though both the exponent range and the precision were
unbounded would lie strictly between +2E-mMn

The MIPS architecture specifies that tininess be detected after rounding.

Loss of Accuracy: The |EEE standard specifies that |oss of accuracy may be detected as aresult of either of these
conditions:

» Denormalization loss, when the delivered result differs from what would have been computed if the exponent
range were unbounded

* Inexact result, when the delivered result differs from what would have been computed if both the exponent range
and precision were unbounded

The MIPS architecture specifies that loss of accuracy is detected as inexact result.

Signalling an Under flow: When an underflow trap is not enabled, underflow is signaled only when both tininess and
loss of accuracy have been detected. The delivered result might be zero, denormalized, or +2E_min

MIPS® Architecture For Programmers Volume I-A: Introduction to the MIPS64® Architecture, Revision 5.04

5.8 FPU Exceptions

When an underflow trap is enabled (through the FCSR Enable field bit), underflow is signaled when tininess is
detected regardless of loss of accuracy.

5.8.1.4 Alternate Flush to Zero Underflow Handling

Previous section 5.8.1.3 “Underflow Exception” describes |EEE standard compliant underflow exception handling,
desired when FCSR.FS=0. The current section describes Alternate Flush to Zero Underflow Handling, obtained by
setting FCSR.FS=1,which never requires the Unimplemented Operation Exception handler to handle subnormal
results, and which may be faster on some implementations even if software exception handler assistance is not
required.

When the FCSR.FSis set:

Results: Every tiny non-zero result is replaced with zero of the same sign.

Inputs: Prior to Release 5 it isimplementation dependent whether subnormal operand values are flushed to zero
before the operation is carried out. As of Release 5 every input subnormal value is replaced with zero of the same
sign.

Exceptions: Because the FCSR.FS bit flushes subnormal results to zero, the Unimplemented Operation Exception

will never be produced for thisreason. All the other floating point exceptions are signal ed according to the new values
of the operands or the results. In addition, when the FCSR.FS hit is set:

« Tiny non-zero results are detected before rounding?. Flushing of tiny non-zero results causes Inexact and Under-
flow Exceptionsto be signaled.

e Flushing of subnormal input operandsin all instructions except comparisons causes I nexact Exception to be sig-
naled.

» For floating-point comparisons, the Inexact Exception is not signaled when subnormal input operands are
flushed.

» Inputsto non-arithmetic floating-point instructions are never flushed.

Should the alternate exception handling attributes of the |EEE Standard for Floating-Point Arithmetic 754™-2008,
Section 8 be desired, the FCSR.FS hit should be zero, the Underflow Exception should be enabled and atrap handler
should be provided to carry out the execution of the alternate exception handling attributes.

5.8.1.5 Overflow Exception

An Overflow exception is signaled when the magnitude of a rounded floating point result, were the exponent range
unbounded, is larger than the destination format’s largest finite number.

When no precise trap occurs, the result is determined by the rounding mode and the sign of the intermediate result.

5.8.1.6 Inexact Exception
An Inexact exception issignaled if one of the following occurs:

» Therounded result of an operation is not exact

2. Tiny non-zero results that would have been normal after rounding are flushed to zero.

MIPS® Architecture For Programmers Volume I-A: Introduction to the MIPS64® Architecture, Revision 5.04 92

Overview of the FPU Instruction Set

» Therounded result of an operation overflows without an overflow trap

5.8.1.7 Unimplemented Operation Exception

The Unimplemented Operation exception isaMIPS defined exception that provides software emulation support. This
exception is not IEEE-compliant.

The MIPS architecture is designed so that a combination of hardware and software may be used to implement the
architecture. Operations that are not fully supported in hardware cause an Unimplemented Operation exception so
that software may perform the operation.

Thereisno Enable bit for this condition; it always causes atrap. After the appropriate emulation or other operationis
donein a software exception handler, the original instruction stream can be continued.

5.8.1.8 Non-Arithmetic Instructions

Some FPU conversion and FPU Formatted Operand-Value Move instructions (see next section) do not perform float-
ing-point arithmetic operations on their input operands. For that reason, such instructions do not generate | EEE arith-
metic exceptions. These instructions include MOV.fmt, MOVEfmt, MOVT fmt, MOVZ.fmt, MOVN fmt, PLL.PS,
PLU.PS, PUL.PS, PUU.PS, CVT.S.PU, CVT.PS.S, CVT.SPL.

5.9 FPU Instructions

The FPU instructions comprise the following functional groups:
» DataTransfer Instructions

* Arithmetic Instructions

» Conversion Instructions

* Formatted Operand-Vaue Move Instructions

» Conditiona Branch Instructions

* Miscellaneous I nstructions

5.9.1 Data Transfer Instructions

The FPU has two separate register sets: coprocessor general registers and coprocessor control registers. The FPU has
aload/store architecture; al computations are done on data held in coprocessor general registers. The control registers
are used to control FPU operation. Data is transferred between registers and the rest of the system with dedicated
load, store, and move instructions. The transferred datais treated as unformatted binary data; no format conversions
are performed, and therefore no | EEE floating point exceptions can occur.

93 MIPS® Architecture For Programmers Volume I-A: Introduction to the MIPS64® Architecture, Revision 5.04

The supported transfer operations are listed in Table 5.14.

5.9 FPU Instructions

Table 5.14 FPU Data Transfer Instructions

Transfer Direction

Data Transferred

FPU general reg “ Memory Word/doubleword |oad/store
FPU general reg < CPU general reg Word/doubleword move
FPU control reg > CPU general reg Word move

5.9.1.1 Data Alignment in Loads, Stores, and Moves

All coprocessor |oads and stores operate on naturally-aligned dataitems. An attempt to load or store to an address that
isnot naturally aligned for the dataitem causes an Address Error exception. Regardless of byte-ordering (the endian-
ness), the address of aword or doubleword isthe smallest byte address in the object. For abig-endian machine, thisis

the most-significant byte; for alittle-endian machine, this is the least-significant byte (endiannessis described in
“Byte Ordering and Endianness’ on page 38).

5.9.1.2 Addressing Used in Data Transfer Instructions

The FPU has loads and stores using the same register + offset addressing as that used by the CPU. Moreover, for the
FPU only, there are load and store instructions using register+register addressing.

Tables 5.15 through 5.17 list the FPU data transfer instructions.

Table 5.15 FPU Loads and Stores Using Register+Offset Address Mode

Instruction
Mnemonic Defined in MIPS ISA
LDC1 Load Doubleword to Floating Point MIPS32
LwC1 L oad Word to Floating Point MIPS32
SDC1 Store Doubleword to Floating Point MIPS32
SWC1 Store Word to Floating Point MIPS32

Table 5.16 FPU Loads and Using Register+Register Address Mode

Mnemonic Instruction Defined in MIPS ISA
LDXC1 Load Doubleword Indexed to Floating Point MIPS64
MIPS32 Release 2
LUXC1 Load Doubleword Indexed Unaligned to Floating Point MIPS64
MIPS32 Release 2
LWXC1 Load Word Indexed to Floating Point MIPS64
MIPS32 Release 2
SDXC1 Store Doubleword Indexed to Floating Point MIPS64
MIPS32 Release 2
SUXC1 Store Doubleword Indexed Unaligned to Floating Point MIPS64
MIPS32 Release 2
SWXC1 Store Word Indexed to Floating Point MIPS64

MIPS32 Release 2

MIPS® Architecture For Programmers Volume I-A: Introduction to the MIPS64® Architecture, Revision 5.04

94

Overview of the FPU Instruction Set

95

Table 5.17 FPU Move To and From Instructions

Mnemonic Instruction Defined in MIPS ISA
CFC1 Move Control Word From Floating Point MIPS32
CTC1 Move Control Word To Floating Point MIPS32
DMFC1 Doubleword Move From Floating Point MIPS64
DMTC1 Doubleword Move To Floating Point MIPS64
MFC1 Move Word From Floating Point MIPS32
MFHC1 Move Word from High Half of Floating Point Register MIPS32 Release 2
MTC1 Move Word To Floating Point MIPS32
MTHC1 Move Word to High Half of Floating Point Register MIPS32 Release 2

5.9.2 Arithmetic Instructions

Arithmetic instructions operate on formatted data values. The results of most floating point arithmetic operations
meet the IEEE standard specification for accuracy—aresult isidentical to an infinite-precision result that has been
rounded to the specified format, using the current rounding mode. The rounded result differs from the exact result by
less than one unit in the least-significant place (ULP).

FPU |EEE-approximate arithmetic operations are listed in Table 5.18.

Table 5.18 FPU IEEE Arithmetic Operations

Mnemonic Instruction Defined in MIPS ISA
ABSfmt Floating Point Absolute Value MIPS32
(Arithmetic if FIRHa52008=0 or FCSRA882008=0)

ABSfmt (PS) Floating Point Absolute Value (Paired Single) MIPS64
(Arlthmetlc if FIRH&SZOOSZO or FCSRABSZOOSZO) MIPS32 Release 2

ADD fmt Floating Point Add MIPS32

ADD fmt (PS) Floating Point Add (Paired Single) MIPS64
MIPS32 Release 2

C.cond fmt Floating Point Compare MIPS32

C.cond fmt (PS) Floating Point Compare (Paired Single) MIPS64
MIPS32 Release 2

DIV fmt Floating Point Divide MIPS32

MUL.fmt Floating Point Multiply MIPS32

MUL fmt (P9 Floating Point Multiply (Paired Single) MIPS64
MIPS32 Release 2

NEG fmt Floating Point Negate MIPS32

(Arlthmetlc if FIRHaSZOOBZO or FCSRABSZOOBZO)

NEG.fmt (PS) Floating Point Negate (Paired Single) MIPS64
(Arlthmetlc if FIRH&ZOOSZO or FCSRABSZOOSZO) MIPS32 Release 2

SQRT fmt Floating Point Square Root MIPS32

SUB fmt Floating Point Subtract MIPS32

SUB fmt (PS) Floating Point Subtract (Paired Single) MIPS64
MIPS32 Release 2

MIPS® Architecture For Programmers Volume I-A: Introduction to the MIPS64® Architecture, Revision 5.04

5.9 FPU Instructions
Two operations, Reciprocal Approximation (RECIP) and Reciprocal Square Root Approximation (RSQRT), may be
less accurate than the | EEE specification:
» Theresult of RECIP differs from the exact reciprocal by no more than one ULP.
* Theresult of RSQRT differs from the exact reciprocal square root by no more than two ULPs.
Within these error limits, the results of these instructions are implementation specific.

A list of FPU-approximate arithmetic operationsis givenin Table 5.19..

Table 5.19 FPU-Approximate Arithmetic Operations

Mnemonic Instruction Defined in MIPS ISA

RECIPfmt Floating Point Reciprocal Approximation MIPS64
MIPS32 Release 2

RSQRT fmt Floating Point Reciprocal Square Root A pproximation MIPS64
MIPS32 Release 2

Four compound-operation instructions perform variations of multiply-accumulate—that is, multiply two operands,
accumulate the result to a third operand, and produce aresult. These instructions are listed in Table 5.20.

Arithmetic and rounding behavior: The product is rounded according to the current rounding mode prior to the
accumulation. The accumulated result is aso rounded. This model meets the | EEE-754-1985 accuracy specification;
the result is numerically identical to an equivalent computation using a sequence of multiply, add/subtract, or negate
instructions. Similarly, exceptions and flags behave asif the operation was implemented with a sequence of multiply,
add/subtract and negate instructions. This behavior is often known as “Non-Fused”.

Table 5.20 lists the FPU Multiply-Accumul ate arithmetic operations.

Table 5.20 FPU Multiply-Accumulate Arithmetic Operations

Mnemonic Instruction Defined in MIPS ISA
MADD fmt Floating Point Multiply Add MIPS64
MIPS32 Release 2
MADD fmt (PS) Floating Point Multiply Add (Paired Single) MIPS64
MIPS32 Release 2
MSUB fmt Floating Point Multiply Subtract MIPS64
MIPS32 Release 2
MSUB fmt (PS) Floating Point Multiply Subtract (Paired Single) MIPS64
MIPS32 Release 2
NMADD.fmt Floating Point Negative Multiply Add MIPS64
MIPS32 Release 2
NMADD fmt (PS) | Floating Point Negative Multiply Add (Paired Single) MIPS64
MIPS32 Release 2
NMSUB.fmt Floating Point Negative Multiply Subtract MIPS64
MIPS32 Release 2
NMSUB fmt (PS) | Floating Point Negative Multiply Subtract (Paired Single) MIPS64
MIPS32 Release 2

MIPS® Architecture For Programmers Volume I-A: Introduction to the MIPS64® Architecture, Revision 5.04 96

Overview of the FPU Instruction Set

97

5.9.3 Conversion Instructions

These instructions perform conversions between floating point and fixed point data types. Each instruction converts
values from anumber of operand formatsto a particular result format. Some conversion instructions use the rounding
mode specified in the Floating Control/Status register (FCSR), while others specify the rounding mode directly.

Tables 5.21 and 5.22 list the FPU conversion instructions according to their rounding mode.

Table 5.21 FPU Conversion Operations Using the FCSR Rounding Mode

Instruction
Mnemonic Defined in MIPS ISA

CVT.D fmt Floating Point Convert to Double Floating Point MIPS32

CVT.L fmt Floating Point Convert to Long Fixed Point MIPS64
MIPS32 Release 2

CVT.PS.S Floating Point Convert Pair to Paired Single MIPS64
MIPS32 Release 2

CVT.Sfmt Floating Point Convert to Single Floating Point MIPS32

CVT.Sfmt (PL, PU) | Floating Point Convert to Single Floating Point MIPS64
(Paired Lower, Paired Upper) MIPS32 Release 2

CVT.W fmt Floating Point Convert to Word Fixed Point MIPS32

Table 5.22 FPU Conversion Operations Using a Directed Rounding Mode

Mnemonic Instruction Defined in MIPS ISA
CEIL.L.fmt Floating Point Ceiling to Long Fixed Point MIPS64
MIPS32 Release 2
CEIL.W.fmt Floating Point Ceiling to Word Fixed Point MIPS32
FLOOR.L fmt Floating Point Floor to Long Fixed Point MIPS64
MIPS32 Release 2
FLOOR.W fmt Floating Point Floor to Word Fixed Point MIPS32
ROUND.L fmt Floating Point Round to Long Fixed Point MIPS64
MIPS32 Release 2
ROUND.W fmt Floating Point Round to Word Fixed Point MIPS32
TRUNC.L.fmt Floating Point Truncate to Long Fixed Point MIPS64
MIPS32 Release 2
TRUNC.W fmt Floating Point Truncate to Word Fixed Point MIPS32

5.9.4 Formatted Operand-Value Move Instructions

These instructions all move formatted operand values among FPU general registers. A particular operand type must
be moved by the instruction that handles that type. There are four kinds of move instructions:

* Unconditional move

* Instructions which modify the sign bit (ABS fmt and NEG.fmt when FCSRags00s=1)

» Conditional move that tests an FPU true/false condition code

MIPS® Architecture For Programmers Volume I-A: Introduction to the MIPS64® Architecture, Revision 5.04

5.9 FPU Instructions

» Conditiona move that tests a CPU general-purpose register against zero

Conditional move instructions operate in away that may be unexpected. They always force the value in the destina-

tion register to become avalue of the format specified in theinstruction. If the destination register does not contain an
operand of the specified format before the conditional move is executed, the contents become UNPREDICTABLE.
(For more information, see the individual descriptions of the conditional move instructionsin Volume11.)

These instructions are listed in Tables 5.23 through 5.25.

Table 5.23 FPU Formatted Operand Move Instructions

Mnemonic Instruction Defined in MIPS ISA
ABSfmt Floating Point Absolute Value MIPS32
(Non-Arithmetic if FCSRagspo0g=1)
ABSfmt (PS Floating Point Absolute Value (Paired Single) MIPS64
(Non-Arithmetic if FCSRagspo0g=1) MIPS32 Release 2
MOV fmt Floating Point Move MIPS32
MOV fmt (PS) Floating Point Move (Paired Single) MIPS64
MIPS32 Release 2
NEG fmt Floating Point Negate MIPS32
(Non-ArithmetiC if FCSRA852008:1)
NEG.fmt (PS) Floating Point Negate (Paired Single) MIPS64
(Non-Arithmetic if FCSRagspo0g=1) MIPS32 Release 2
Table 5.24 FPU Conditional Move on True/False Instructions
Mnemonic Instruction Defined in MIPS ISA
MOV Ffmt Floating Point Move Conditional on FP False MIPS32
MOVFfmt (P9 Floating Point Move Conditional on FP False MIPS64
(Paired Single) MIPS32 Release 2
MOVT fmt Floating Point Move Conditional on FP True MIPS32
MOVT fmt (P9 Floating Point Move Conditional on FP True MIPS64
(Paired Single) MIPS32 Release 2

Table 5.25 FPU Conditional Move on Zero/Nonzero Instructions

Mnemonic Instruction Defined in MIPS ISA
MOVN fmt Floating Point Move Conditional on Nonzero MIPS32
MOVN fmt (PS) Floating Point Move Conditional on Nonzero MIPS64
(Paired Single) MIPS32 Release 2
MOVZ.fmt Floating Point Move Conditional on Zero MIPS32
MOVZ fmt (PS Floating Point Move Conditional on Zero MIPS64
(Paired Single) MIPS32 Release 2

5.9.5 Conditional Branch Instructions

The FPU has PC-relative conditional branch instructions that test condition codes set by FPU compare instructions
(C.cond fmt).

MIPS® Architecture For Programmers Volume I-A: Introduction to the MIPS64® Architecture, Revision 5.04 98

Overview of the FPU Instruction Set

99

All branches have an architectural delay of one instruction. When abranch is taken, the instruction immediately fol-
lowing the branch instruction is said to be in the branch delay slot, and it is executed before the branch to the target
instruction takes place. Conditional branches come in two versions, depending upon how they handle aninstructionin
the delay slot when the branch is not taken and execution falls through:

* Branch instructions execute the instruction in the delay slot.

Branch likely instructions do not execute the instruction in the delay slot if the branch is not taken (they are said
to nullify the instruction in the delay slot).

Although the Branch Likely instructionsareincluded in this specification, softwareis strongly encour aged
to avoid the use of the Branch Likely instructions, asthey will beremoved from a futurerevision of the
MIPS Architecture.

The M1PS64 Architecture defines eight condition codes for use in compare and branch instructions. For backward
compatibility with previous revision of the ISA, condition code bit 0 and condition code bits 1 thru 7 are in discontig-
uousfieldsin FCSR.

Table 5.26 lists the conditional branch FPU instructions; Table 5.27 lists the deprecated conditional branch likely
instructions.

Table 5.26 FPU Conditional Branch Instructions

Mnemonic Instruction Defined in MIPS ISA
BC1F Branch on FP False MIPS32
BC1T Branch on FP True MIPS32

Table 5.27 Deprecated FPU Conditional Branch Likely Instructions

Mnemonic Instruction Defined in MIPS ISA
BC1FL Branch on FP False Likely MIPS32
BCI1TL Branch on FP True Likely MIPS32

5.9.6 Miscellaneous Instructions

The MIPS ISA defines various miscellaneous instructions that conditionally move one CPU general register to
another, based on an FPU condition code. It aso defines an instruction to align amisaligned pair of paired-single val-

ues (ALNV.PS) and a quartet of instructions that merge a pair of paired-single values (PLL.PS, PLU.PS, PUL.PS,
PUU.PS).

Table 5.28 lists these conditional move instructions.

Table 5.28 CPU Conditional Move on FPU True/False Instructions

Mnemonic Instruction Defined in MIPS ISA
ALNV.PS FP Align Variable MIPS64
MIPS32 Release 2
MOVN fmt Move Conditional on FP False MIPS32
MOVZ.fmt Move Conditional on FP True MIPS32

MIPS® Architecture For Programmers Volume I-A: Introduction to the MIPS64® Architecture, Revision 5.04

5.10 Valid Operands for FPU Instructions

Table 5.28 CPU Conditional Move on FPU True/False Instructions

Mnemonic Instruction Defined in MIPS ISA
PLL.PS Pair Lower Lower MIPS64
MIPS32 Release 2
PLU.PS Pair Lower Upper MIPS64
MIPS32 Release 2
PUL.PS Pair Upper Lower MIPS64
MIPS32 Release 2
PUU.PS Pair Upper Upper MIPS64
MIPS32 Release 2

5.10 Valid Operands for FPU Instructions

The floating point unit arithmetic, conversion, and operand move instructions operate on formatted values with differ-
ent precision and range limits and produce formatted values for results. Each representable value in each format has a
binary encoding that is read from or stored to memory. The fmt or fmt3 field of the instruction encodes the operand
format required for theinstruction. A conversion instruction specifies the result type in the function field; the result of
other operationsis given in the same format as the operands. The encodings of the fmt and fmt3 field are shown in

Table 5.29.
Table 5.29 FPU Operand Format Field (fmt, fmt3) Encoding
Instruction Size
Mnemonic
fmt fmt3 Name Bits Data Type
0-15 - Reserved
16 0 S single 32 Floating point
17 1 D double 64 Floating point
18-19 2-3 Reserved
20 4 W word 32 Fixed point
21 5 L long 64 Fixed point
22 6 PS paired single 64 (2x32) Floating point
23-31 7 Reserved

Theresult of an instruction using operand formats marked U in Table 5.30 is not currently specified by this architec-
ture and causes a Reserved Instruction exception.

Table 5.30 Valid Formats for FPU Operations

Operand Fmt
Float Fixed COPl | COPIX
Function op4
Mnemonic Operation S D PS | W L Value Value
ABS Absolute value . o . U U 5
ADD Add . . . U U 0
C.cond Floating Point compare . . . U U 48-63

MIPS® Architecture For Programmers Volume I-A: Introduction to the MIPS64® Architecture, Revision 5.04 100

Overview of the FPU Instruction Set

Table 5.30 Valid Formats for FPU Operations (Continued)

Operand Fmt
Float Fixed an?:';’ii] ngjx
Mnemonic Operation D PS | W Value Value
CEIL.L, Convert to longword (word) fixed point, round . U U U 10 (14)
(CEIL.W) toward +eo
CVT.D Convert to double floating point U U . . 33
CVT.L Convert to longword fixed point . U U U 37
CVT.S Convert to single floating point . U . . 32
CVT. PU, PL Convert to single floating point (paired upper, U . U U 32,40
paired lower)
CVT.W Convert to 32-bit fixed point o U U U 36
DIV Divide . U U U 3
FLOOR.L, Convert to longword (word) fixed point, round o U U U 11 (15)
(FLOOR.W) toward —co
MADD Multiply-Add . . u u 4
MOV Move Register . . U U 6
MoOvC FP Move conditional on condition o . u U 17
MOVN FP Move conditional on GPR=zero o . U U 19
MOVZ FP Move conditional on GPR=zero o . U U 18
MSUB Multiply-Subtract . . U U 5
MUL Multiply . . U U 2
NEG Negate . . U U 7
NMADD Negative Multiply-Add . . U U 6
NMSUB Negative Multiply-Subtract o . U U 7
PLL, PLU, PUL, |Pair (Lower Lower, Lower Upper, Upper Lower, U .) U 44-47
PUU Upper Upper)
RECIP Reciprocal Approximation . U U U 21
ROUND.L, Convert to longword (word) fixed point, round . U U U 8(12)
(ROUND.W) to nearest/even
RSQRT Reciprocal square root approximation . U U U 22
SQRT Square Root . U U U 4
SUB Subtract . . U U 1
TRUNCL.L, Convert to longword (word) fixed point, round . U U U 9(13)
(TRUNC.W) toward zero
Key: e — Valid. U — Unimplemented and causes Reserved Instruction Exception.

5.11 FPU Instruction Formats

An FPU instruction is asingle 32-hit aligned word. FP instruction formats are shown in Figures 5.18 through 5.27.

101 MIPS® Architecture For Programmers Volume I-A: Introduction to the MIPS64® Architecture, Revision 5.04

5.11 FPU Instruction Formats

In these figures, variables are labelled in lowercase, such as offset. Constants are labelled in uppercase, as are numer-
als. Following these figures, Table 5.31 explains the fields used in the instruction layouts. Note that the same field

may have different namesin different instruction layouts.

The field name is mnemonic to the function of that field in the instruction layout. The opcode tables and the instruc-
tion encode discussion use the canonical field names: opcode, fmt, nd, tf, and function. The remaining fields are not
used for instruction encode.

5.11.1 Implementation Note

When present, the destination FPR specifier may bein thefs, ft, or fd field.

MIPS® Architecture For Programmers Volume I-A: Introduction to the MIPS64® Architecture, Revision 5.04 102

Overview of the FPU Instruction Set

103

Figure 5.18 I-Type (Immediate) FPU Instruction Format

31 26 25 21 20 16 15 0
opcode base ft offset
6 5 5 16
Immediate: Load/Store using register + offset addressing
Figure 5.19 R-Type (Register) FPU Instruction Format
31 26 25 21 20 16 15 11 10 6 5 0
COP1 fmt ft fs fd function
6 5 5 5 5 6
Register: Two-register and Three-register formatted arithmetic operations
Figure 5.20 Register-Immediate FPU Instruction Format
31 26 25 21 20 16 15 11 0
COP1 sub rt fs 0
6 5 5 5 11
Register Immediate; Data transfer, CPU <> FPU register
Figure 5.21 Condition Code, Immediate FPU Instruction Format
31 26 25 21 20 18 17 16 15 0
COP1 BCC1 cc nd| tf offset
6 5 3 11 16
Condition Code, Immediate: Conditional branches on FPU cc using PC + offset
Figure 5.22 Formatted FPU Compare Instruction Format
31 26 25 21 20 16 15 11 10 8 7 6 5 0
COP1 fmt ft fs cc 0 function
6 5 5 5 3 2 6
Register to Condition Code: Formatted FP compare
Figure 5.23 FP RegisterMove, Conditional Instruction Format
31 26 25 21 20 18 17 16 15 11 10 6 5 0
COP1 fmt cc 0| tf fs fd MOVCF
6 5 3 1 1 5 5 6
Condition Code, Register FP: FPU register move-conditional on FPR, cc
Figure 5.24 Four-Register Formatted Arithmetic FPU Instruction Format
31 26 25 21 20 16 15 11 10 6 5 0
COP1X fr ft fs fd op4 fmt3
6 5 5 5 5 3 3

Register-4: Four-register formatted arithmetic operations

MIPS® Architecture For Programmers Volume I-A: Introduction to the MIPS64® Architecture, Revision 5.04

Figure 5.25 Register Index FPU Instruction Format

5.11 FPU Instruction Formats

31 26 25 21 20 16 15 11 10 6 5
COP1X base index 0 fd function
6 5 5 5 5 6
Register Index: Load and Store using register + register addressing
Figure 5.26 Register Index Hint FPU Instruction Format
31 26 25 21 20 16 15 11 10 6 5
COP1X base index hint 0 PREFX
6 5 5 5 5 6
Register Index Hint: Prefetch using register + register addressing
Figure 5.27 Condition Code, Register Integer FPU Instruction Format
31 26 25 21 20 18 17 16 15 11 10 6 5
SPECIAL rs cc 0| tf rd 0 MOVCI
6 5 3 11 5 5 6
Condition Code, Register Integer: CPU register move-conditional on FP, cc
Table 5.31 FPU Instruction Format Fields
Field Description
BC1 Branch Conditional instruction subcode (op=COP1).
base CPU register: base address for address calculations.
COP1 Coprocessor 1 primary opcode valuein op field.
COP1X Coprocessor 1 eXtended primary opcode valuein op field.
cc Condition Code specifier; for architectural levels prior to MIPS IV, this must be set to zero.
fd FPU register: destination (arithmetic, loads, move-to) or source (stores, move-from).
fmt Destination and/or operand type (format) specifier.
fr FPU register: source.
fs FPU register: source.
ft FPU register: source (for stores, arithmetic) or destination (for loads).
function Field specifying a function within a particular op operation code.
function: op4 isa 3-bit function field specifying a 4-register arithmetic operation for COP1X. fmt3 isa 3-
op4 + fmt3 bit field specifying the format of the operands and destination. The combinations are shown as
distinct instructions in the opcode tables.
hint Hint field made available to cache controller for prefetch operation.
index CPU register that holds the index address component for address cal culations.
MOVC Vauein function field for a conditional move. There is one value for the instruction when
op=COP1, ancther value for the instruction when op=SPECIAL.
nd Nullify delay. If set, the branch is Likely, and the delay slot instruction is not executed.
offset Signed offset field used in address calculations.
op Primary operation code (see COP1, COP1X, LWC1, SWC1, LDC1, SDC1, SPECIAL).

MIPS® Architecture For Programmers Volume I-A: Introduction to the MIPS64® Architecture, Revision 5.04

104

Overview of the FPU Instruction Set

Table 5.31 FPU Instruction Format Fields (Continued)

Field Description
PREFX Valuein function field for prefetch instruction when op=COP1X.
rd CPU register: destination.
rs CPU register: source.
rt CPU register: can be either source or destination.
SPECIAL SPECIAL primary opcode value in op field.
sub Operation subcode field for COP1 register immediate-mode instructions.
tf True/False. The condition from an FP compare that is tested for equality with the tf bit.

105 MIPS® Architecture For Programmers Volume I-A: Introduction to the MIPS64® Architecture, Revision 5.04

5.11 FPU Instruction Formats

MIPS® Architecture For Programmers Volume I-A: Introduction to the MIPS64® Architecture, Revision 5.04 106

Appendix A

Instruction Bit Encodings

A.l Instruction Encodings and Instruction Classes

Instruction encodings are presented in this section; field names are printed here and throughout the book in italics.

When encoding an instruction, the primary opcode field is encoded first. Most opcode values completely specify an
instruction that has an immediate value or offset.

Opcode values that do not specify an instruction instead specify an instruction class. Instructions within a class are
further specified by valuesin other fields. For instance, opcode REGIMM specifies the immediate instruction class,
which includes conditional branch and trap immediate instructions.

A.2 Instruction Bit Encoding Tables

This section provides various bit encoding tables for the instructions of the Ml ISA.

Figure A.1 shows a sample encoding table and the instruction opcode field this table encodes. Bits 31..29 of the
opcodefield are listed in the leftmost columns of the table. Bits 28..26 of the opcode field are listed along the topmost
rows of the table. Both decimal and binary values are given, with the first three bits designating the row, and the last
three bits designating the column.

Aninstruction’s encoding is found at the intersection of arow (bits 31..29) and column (bits 28..26) value. For

instance, the opcode value for the instruction labelled EX1 is 33 (decimal, row and column), or 011011 (binary). Sim-
ilarly, the opcode value for EX2 is 64 (decimal), or 110100 (binary).

MIPS® Architecture For Programmers Volume I-A: Introduction to the MIPS64® Architecture, Revision 5.04 107

A.2 Instruction Bit Encoding Tables

Figure A.1 Sample Bit Encoding Table

31 26 25 21 20 16 15 0

opcode rs rt immediate

5 5 16

Binary encoding of
opcode (28..26)

Decimal encoding of
* opcode (28..26)

opcode bits 28..26 \

0 1 2 3 4 5 6 ~ 7 *
bits 31..29 000 001 010 011 100 101 110 111
o | ooo
001
010
011 EX1
100
101
110 EX2
111

—%

~N| o] o] M| W[N]

Binary encoding of

)) opcode (31..29)
Decimal encoding of

opcode (31..29)

Tables A.2 through A.23 describe the encoding used for the MIPS64 I SA. Table A.1 describes the meaning of the
symbols used in the tables.

Table A.1 Symbols Used in the Instruction Encoding Tables

Symbol Meaning

* Operation or field codes marked with this symbol are reserved for future use. Executing such an
instruction must cause a Reserved Instruction Exception.

) (Alsoitalic field name.) Operation or field codes marked with this symbol denotes afield class.
The instruction word must be further decoded by examining additional tables that show values for
another instruction field.

B Operation or field codes marked with this symbol represent a valid encoding for a higher-order
MIPSISA level or anew revision of the Architecture. Executing such an instruction must cause a
Reserved Instruction Exception.

L Operation or field codes marked with this symbol represent instructions which are not legal if the
processor is configured to be backward compatible with MIPS32 processors. If the processor is
executing with 64-bit operations enabled, execution proceeds normally. In other cases, executing
such an instruction must cause a Reserved | nstruction Exception (non-coprocessor encodings or
coprocessor instruction encodings for a coprocessor to which access is alowed) or a Coprocessor
Unusable Exception (coprocessor instruction encodings for a coprocessor to which accessis not
allowed).

MIPS® Architecture For Programmers Volume I-A: Introduction to the MIPS64® Architecture, Revision 5.04 108

Instruction Bit Encodings

Table A.1 Symbols Used in the Instruction Encoding Tables (Continued)

Symbol Meaning

\Y% Operation or field codes marked with this symbol represent instructions which were only legal if
64-bit operations were enabled on implementations of Release 1 of the Architecture. In Release 2
of the architecture, operation or field codes marked with this symbol represent instructions which
arelegal if 64-bit floating point operations are enabled. In other cases, executing such an instruc-
tion must cause a Reserved Instruction Exception (non-coprocessor encodings or Coprocessor
instruction encodings for a coprocessor to which accessis allowed) or a Coprocessor Unusable
Exception (coprocessor instruction encodings for a coprocessor to which accessis not allowed).

A Instructions formerly marked V in some earlier versions of manuals, corrected and marked A in
revision 5.03. Legal on MIPS64r1 but not MI1PS32r1; in release 2 and above, legal in both MIPS64
and MIPS32, in particular even when running in “ 32-bit FPU Register File mode’, FR=0, as well
asFR=1.

0 Operation or field codes marked with this symbol are available to licensed MIPS partners. To avoid
multiple conflicting instruction definitions, M1PS Technologies will assist the partner in selecting
appropriate encodings if requested by the partner. The partner is not required to consult with MIPS
Technol ogies when one of these encodingsis used. If no instruction is encoded with this value,
executing such an instruction must cause a Reserved Instruction Exception (SPECIAL2 encodings
or coprocessor instruction encodings for a coprocessor to which accessis allowed) or a Coproces-
sor Unusable Exception (coprocessor instruction encodings for a coprocessor to which accessis
not allowed).

c Field codes marked with this symbol represent an EJTAG support instruction and implementation
of thisencoding is optional for each implementation. If the encoding is not implemented, execut-
ing such an instruction must cause a Reserved Instruction Exception. If the encoding isimple-
mented, it must match the instruction encoding as shown in the table.

€ Operation or field codes marked with this symbol are reserved for MIPS optional Module or Appli-
cation Specific Extensions. If the Module/ASE is not implemented, executing such an instruction
must cause a Reserved Instruction Exception.

(] Operation or field codes marked with this symbol are obsolete and will be removed from a future
revision of the MIPS64 ISA. Software should avoid using these operation or field codes.

@ Operation or field codes marked with this symbol are valid for Release 2 implementations of the
architecture. Executing such an instruction in a Release 1 implementation must cause a Reserved
Instruction Exception.

Table A.2 MIPS64 Encoding of the Opcode Field

’W bits 28..26
0 1 2 3 4 5 6 7

bits 31..29 000 001 010 011 100 101 110 111
0 000 SPECIAL & REGIMM & J JAL BEQ BNE BLEZ BGTz
1 001 ADDI ADDIU SLTI SLTIU ANDI ORI XORI LUI
2 010 COPO & COP1 8 COP2 65 COP1X & BEQL ¢ BNEL ¢ BLEZL ¢ BGTZL ¢
3| o011 | pabbiL | DADDILUL LDL L LDR L SPECIAL23 | JALXe MSAes |SPECIAL3! 5@
4 100 LB LH LWL LW LBU LHU LWR LWU L
5 101 SB SH SWL SW SDL L SDR L SWR CACHE
6 110 LL LWC1 LWC2 6 PREF LLD L LDC1 LDC2 6 LD L
7 111 SC SWC1 SWC2 6 * SCD L SDC1 SDC2 6 SD L

1. Release 2 of the Architecture added the SPECIAL 3 opcode. Implementations of Release 1 of the Architecture sig-
naled a Reserved Instruction Exception for this opcode.

109 MIPS® Architecture For Programmers Volume I-A: Introduction to the MIPS64® Architecture, Revision 5.04

A.2 Instruction Bit Encoding Tables

Table A.3 MIPS64 SPECIAL Opcode Encoding of Function Field

function bits 2..0
0 1 2 3 4 5 6 7
bits 5..3 000 001 010 011 100 101 110 111
0 | 000 sLLt MOVCI & SRL & SRA SLLV LSAe SRLV & SRAV
1| 001 JR? JALR? MOvVzZ MOVN SYSCALL BREAK * SYNC
2 | o010 MFHI MTHI MFLO MTLO DSLLV L DLSA el DSRLV &L DSRAV L
3 | 011 MULT MULTU DIV DIVU DMULT L DMULTU L DDIV L DDIVU L
4 100 ADD ADDU SuUB SUBU AND OR XOR NOR
5 101 # * SLT SLTU DADD L DADDU L DSUB L DSUBU L
6 110 TGE TGEU TLT TLTU TEQ * TNE ®
7 | 111 DSLL L * DSRL 8L DSRA L DSLL32 L * DSRL32 8L DSRA32 L

1. Specific encodings of thert, rd, and sa fields are used to distinguish among the SLL, NOP, SSNOP, EHB and
PAUSE functions.
2. Specific encodings of the hint field are used to distinguish JR from JR.HB and JALR from JALR.HB

Table A.4 MIPS64 REGIMM Encoding of rt Field

W bits 18..16
0 1 2 3 4 5 6 7
bits 20..19 000 001 010 011 100 101 110 111
0 00 BLTZ BGEZ BLTZL ¢ BGEZL ¢ * ® ® €
1 01 TGEI TGEIU TLTI TLTIU TEQI ® TNEI *
2 10 BLTZAL BGEZAL BLTZALL ¢ BGEZALL ¢ * ® # *
3 | 11 ¥ x P £ € % SYNCI @
Table A.5 MIPS64 SPECIAL2 Encoding of Function Field
’W bits 2..0
0 1 2 3 4 5 6 7
bits 5..3 000 001 010 011 100 101 110 111
0 [000 MADD MADDU MUL 0 MSUB MSUBU 0 0
1 | 001 € 0 0 0 0 0 0 0
2 010 0 0 0 0 0 0 0 0
3| on1)))) 8) 0 8
4 100 CLz CLO 0 0 DCLZ L DCLO L 0 0
5 | 101) 8 0) 8)))
6 | 110 8 8 0) 8 9 0 8
7 111 0 0 0 0 0 0 0 SDBBP ¢

MIPS® Architecture For Programmers Volume I-A: Introduction to the MIPS64® Architecture, Revision 5.04

110

Instruction Bit Encodings

Table A.6 MIPS64 SPECIAL3! Encoding of Function Field for Release 2 of the Architecture

function | bits2..0
0 1 2 3 4 5 6 7
bits5..3 000 001 010 011 100 101 110 111
0| 000 EXT@® |DEXTM L®|DEXTU L®| DEXT 1® INS@ |DINSM 1@ |DINSU L@ | DINS1®
1 (001 € € € * € € * *
2| 010 € € € € € € € €
3| 011 € LWLE LWRE CACHEE SBE SHE SCE SWE
4 | 100 | BSHFL ®& SWLE SWRE PREFE DBSHFL * ® *
1®8

5] 101 LBUE LHUE * * LBE LHE LLE LWE
6 | 110 € € ® * € ® * *

111 € * * RDHWR & € * ® *

1. Release 2 of the Architecture added the SPECIAL 3 opcode. Implementations of Release 1 of the Architecture sig-
naled a Reserved Instruction Exception for this opcode and all function field values shown above.

Table A.7 MIPS64 MOVCI Encoding of tf Bit

tf bit 16

0 1
MOVF MOVT

Table A.8 MIPS64! SRL Encoding of Shift/Rotate

R bit 21

0 1
SRL ROTR

1. Release 2 of the Architecture
added the ROTR instruction.
Implementations of Release 1 of
the Architecture ignored bit 21
and treated the instruction as an
SRL

Table A.9 MIPS64! SRLV Encoding of Shift/Rotate

R bit 6

0 1
SRLV ROTRV

1. Release 2 of the Architecture
added the ROTRV instruction.
Implementations of Release 1 of
the Architecture ignored bit 6
and treated the instruction as an
SRLV

111 MIPS® Architecture For Programmers Volume I-A: Introduction to the MIPS64® Architecture, Revision 5.04

A.2 Instruction Bit Encoding Tables

Table A.10 MIPS641 DSRLV Encoding of Shift/Rotate

W bit 6

0 1
DSRLV DROTRV

1. Release 2 of the Architecture
added the DROTRV instruction.
Implementations of Release 1 of
the Architecture ignored bit 6
and treated the instruction as a
DSRLV

Table A.11 MIPS64! DSRL Encoding of Shift/Rotate

R bit 21

0 1
DSRL DROTR

1. Release 2 of the Architecture
added the DROTR instruction.
Implementations of Release 1 of
the Architecture ignored bit 21
and treated the instruction as a
DSRL

Table A.12 MIPS64! DSRL32 Encoding of Shift/Rotate

R bit 21

0 1
DSRL32 DROTR32

1. Release 2 of the Architecture
added the DROTR32 instruction.
Implementations of Release 1 of
the Architecture ignored bit 21
and treated the instruction as a
DSRL32

Table A.13 MIPS64 BSHFL and DBSHFL Encoding of sa Field*

sa bits 8..6
0 1 2 3 4 5 6 7

bits 10..9 000 001 010 011 100 101 110 111
WSBH
(BSHFL)
DSBH DSHD

0| 00 (DBSHFL) (DBSHFL)

1 01

2 | 10 |SEB (BSHFL)

3 | 11 |SEH (BSHFL)

MIPS® Architecture For Programmers Volume I-A: Introduction to the MIPS64® Architecture, Revision 5.04

112

Instruction Bit Encodings

113

1. The safield is sparsely decoded to identify the final instructions. Entries in this table with no mnemonic are
reserved for future use by MIPS Technologies and may or may not cause a Reserved I nstruction exception.

Table A.14 MIPS64 COPO Encoding of rs Field

’T bits 23..21
0 1 2 3 2 5 6 7
bits 25..24 000 001 010 011 100 101 110 111
0| oo MFCO DMFCO L € MTCO DMTCO L # #
1| o1 £ * RDPGPR @ | MFMCO! 5@ £ WRPGPR ® #
2| 10
3| 11 co s

1. Release 2 of the Architecture added the MFM CO function, which is further decoded asthe DI (bit 5= 0) and El (bit
5=1) instructions.

Table A.15 MIPS64 COPO Encoding of Function Field When rs=CO

’W bits 2..0
0 1 2 3 4 5 6 7
bits 5..3 000 001 010 011 100 101 110 111
0 | 000 % TLBR TLBWI TLBINV TLBINVF x TLBWR *
1 | oo1 TLBP € € € £ € .
2 | o010 € * x # # « "
3 | 011 ERET * ® # * ® *® DERET ¢
4 | 100 WAIT # ¥ B "
5 | 101 € # , W # % "
6 | 110 % # % ® # % ® #
7| 111 € # % # x "
Table A.16 MIPS64 COP1 Encoding of rs Field
rs bits 23..21
0 1 2 3 4 5 6 7
bits 25..24 000 001 010 011 100 101 110 111
0| 00 MFC1 DMFC1 L CFC1 MFHC1 & MTC1 DMTC1 L CTC1 MTHCl1 &
1] 01 BC14 BC1ANY2 BC1ANY4 BZ.V ¢ * * * BNZ.V ¢
eV eV
2| 10 S D& * * W Ld PS 6 ®
3| 11 BZBe BZHe BZW ¢ BZDe BNZ.B ¢ BNZ.He BNZ.W ¢ BNZ.D ¢

MIPS® Architecture For Programmers Volume I-A: Introduction to the MIPS64® Architecture, Revision 5.04

A.2 Instruction Bit Encoding Tables

Table A.17 MIPS64 COP1 Encoding of Function Field When rs=S

function bits 2..0
0 1 2 3 4 5 6 7
bits 5..3 000 001 010 011 100 101 110 111
0 000 ADD SuB MUL DIV SQRT ABS MOV NEG
1 001 ROUND.L V TRUNC.LV CEIL.LV FLOOR.L V ROUND.W TRUNC.W CEILW FLOOR.W
2 010 * MOVCF & MOvVzZ MOVN # RECIP A RSQRT A ®
3 011 * * * * RECIP2 eV RECIP1 eV RSQRT1 eV RSQRT2 eV
4 100 * CVT.D * * CVT.W CVTLV CVT.PSV *
5 | 101 * * * * * * * *
CF C.UN C.EQ C.UEQ Cc.oLT C.ULT C.OLE C.ULE
6 110 CABS.F eV CABS.UN gV CABS.EQ eV | CABS.UEQ ¢V | CABS.OLT ¢V | CABS.ULT ¢V | CABS.OLE ¢V | CABS.ULE &V
C.SF C.NGLE C.SEQ C.NGL C.LT C.NGE C.LE C.NGT
7 | 111 | CABS.SFeV |CABS.NGLE eV | CABS.SEQeV | CABS.NGLeV | CABS.LTeV | CABSNGEeV | CABSLEeV | CABS.NGT eV
Table A.18 MIPS64 COP1 Encoding of Function Field When rs=D
W bits 2..0
0 1 2 3 4 5 6 7
bits 5..3 000 001 010 011 100 101 110 111
0 000 ADD SuUB MUL DIV SQRT ABS MOV NEG
1 001 ROUND.L V TRUNC.LV CEILLV FLOOR.L V ROUND.W TRUNC.W CEILW FLOOR.W
2 010 * MOVCF & MOvVzZ MOVN # RECIP A RSQRT A *
3 011 * * * * RECIP2 eV RECIP1 eV RSQRT1 eV RSQRT2 eV
4 | 100 CVTS x CcVTW CVTLV
5 101 * # * ® % * * «
C.F C.UN C.EQ C.UEQ C.OLT C.ULT C.OLE C.ULE
6 110 CABS.F eV CABS.UN gV CABS.EQ eV | CABS.UEQ &V | CABS.OLT ¢V | CABS.ULT ¢V | CABS.OLE ¢V | CABS.ULE &V
C.SF C.NGLE C.SEQ C.NGL C.LT C.NGE C.LE C.NGT
7 111 CABS.SF ¢V | CABS.NGLE €V | CABS.SEQ ¢V | CABS.NGL eV CABS.LT eV CABS.NGE ¢V | CABS.LE eV CABS.NGT &V
Table A.19 MIPS64 COP1 Encoding of Function Field When rs=W or Lt
’W bits 2..0
0 1 2 3 4 5 6 7
bits 5..3 000 001 010 011 100 101 110 111
0 | ooo * * * * * * * *
1 001 * ® ® * * * * *
2 | o10 * # - - "
3 011 # * * * * * * ®
4 | 100 CVTS CVT.D ® ® ® # CVT.PS.PW eV ®
5 101 % % # # ® 3 * %
6 | 110 # i y # * P % x
7 | 112 * * * ® * * * ®

1. Format type L islegal only if 64-bit floating point operations are enabled.

MIPS® Architecture For Programmers Volume I-A: Introduction to the MIPS64® Architecture, Revision 5.04

Instruction Bit Encodings

Table A.20 MIPS64 COP1 Encoding of Function Field When rs=PS?

function bits 2..0
0 1 2 3 4 5 6 7
bits 5..3 000 001 010 011 100 101 110 111
o | ooo ADD V SUBV MUL V x P ABS V MOV V NEG V
1 001 * * * * * * E3 *
2 010 * MOVCF 8V MOvVZ V MOVN V * * * *
3 011 ADDR &V * MULR &V * RECIP2 eV RECIP1 eV RSQRT1 eV RSQRT2 eV
4| 100 | cvispuv x - x CVT.PW.PS eV - - -
5 101 CVT.S.PLV * * * PLL.PSV PLU.PS V PUL.PS V PUU.PSV
CFV CUNV CEQV C.UEQV coLTv CULTV COLEV CULEV
6 110 CABS.F eV CABS.UN &gV CABS.EQ eV | CABS.UEQ &V | CABS.OLT €V | CABS.ULT eV | CABS.OLE ¢V | CABS.ULE &V
C.SFV C.NGLE V C.SEQV C.NGLV CLTV C.NGEV CLEV CNGTV
7 111 CABS.SF eV | CABS.NGLEeV | CABS.SEQ €V | CABS.NGL eV CABS.LT eV CABS.NGE ¢V | CABS.LE &V | CABS.NGT &V
1. Format type PSislegal only if 64-bit floating point operations are enabled.
Table A.21 MIPS64 COP1 Encoding of tf Bit When rs=S, D, or PS, Function=MOVCF
'tif bit 16
0 1
MOVFE.fmt MOVT.fmt
Table A.22 MIPS64 COP2 Encoding of rs Field
’T bits 23..21
0 1 2 3 4 5 6 7
bits 25..24 000 001 010 011 100 101 110 111
0 00 MFC2 6 DMFC2 6L CFC26 MFHC2 6& MTC2 6 DMTC2 6L CTC26 MTHC2 6&
1| 01 BC2 6 i« * * i« * * e
2 10
3| 1 c2 05
Table A.23 MIPS64 COP1X Encoding of Function Field
’W bits 2..0
0 1 2 3 4 5 6 7
bits 5..3 000 001 010 011 100 101 110 111
0 | 000 LWXC1 A LDXC1 A ® # * LUXC1 V # *
1 001 SWXC1 A SDXC1 A ® # * SUXC1V # PREFX A
2 | 010 * * * * * * * *
3 | o011 e e * * * * ALNV.PS V *
4| 100 | MADD.SA | MADD.D A - x MADD.PS V x
5 101 MSUB.S A MSUB.D A # # * ® MSUB.PS V *
6 110 NMADD.S A | NMADD.D A # # * ® NMADD.PS V *
7 111 NMSUB.S A | NMSUB.D A # # * ® NMSUB.PS V *

115 MIPS® Architecture For Programmers Volume I-A: Introduction to the MIPS64® Architecture, Revision 5.04

A.3 Floating Point Unit Instruction Format Encodings

A.3 Floating Point Unit Instruction Format Encodings

Instruction format encodings for the floating point unit are presented in this section. Thisinformation is atabular pre-
sentation of the encodings described in tables Table A.16 and Table A.23 above.

Table A.24 Floating Point Unit Instruction Format Encodings

fmt field fmt3 field
(bits 25..21 of COP1 | (bits 2..0 of COP1X
opcode) opcode)
Decimal Hex Decimal Hex Mnemonic Name Bit Width Data Type
0..15 00..0F — — Used to encode Coprocessor 1 interface instructions (MFCL,
CTC1, etc.). Not used for format encoding.
16 10 0 0 S Single 32 Floating Point
17 11 1 1 D Double 64 Floating Point
18..19 12..13 2.3 2.3 Reserved for future use by the architecture.
20 14 4 4 W Word 32 Fixed Point
21 15 5 5 L Long 64 Fixed Point
22 16 6 6 PS Paired Single 2x32 Floating Point
23 17 7 7 Reserved for future use by the architecture.
24.31 18..1F — — Reserved for future use by the architecture. Not available for
fmt3 encoding.

MIPS® Architecture For Programmers Volume I-A: Introduction to the MIPS64® Architecture, Revision 5.04 116

Appendix B

Revision History

Revision Date Description
0.95 March 12, 2001 External review copy of reorganized and updated architecture documentation.
1.00 August 29,2002 Update based on all feedback received:

* Fix bit numbering in FEXR diagram

* Clarify the description of the width of FPRsin 32-bit implementations

* Correct tag on FIR diagram.

» Update the compatibility and subsetting rules to capture the current require-
ments.

» Remove the requirement that alicensee must consult with MIPS Technolo-
gieswhen assigning SPECIAL 2 function fields.

1.90 September 1, 2002 Update the specification with the changes due to Release 2 of the Architecture.

Changes included in this revision are:

» The Coprocessor 1 FIR register was updated with new fields and interpreta-
tions.

» Update architecture and ASE summaries with the new instructions and
information introduced by Release 2 of the Architecture.

2.00 June 8, 2003 Continue the update of the specification for Release 2 of the Architecture.

Changesincluded in this revision are:

 Correct the revision history year for Revision 1.00 (above). It should be
2002, not 2001.

* Remove NOR, OR, and XOR from the 2-operand ALU instruction table.

250 July 1, 2005 Changesin thisrevision:

 Correct the wording of the hidden modes section (see Section 2.2,
"Compliance and Subsetting™).

* Update dl filesto FrameMaker 7.1.

* Allow shadow setsto beimplemented without vectored interrupts or support
for an external interrupt controller. In such an implementation, they are soft-
ware-managed.

2.60 June 25, 2008 » COP3 no longer extendable by customer.
* Section on Instruction fetches added - 1. fetches & endian-ness 2. fetches &
CCA 3. self-modified code
261 December 5,2009 « Fixed paragraph numbering between chapters.
* FPU chapter didn’t makeit clear that MADD/MSUB were non-fused.
3.00 March 25, 2010 » Changesfor microMIPS.
* List changesin Release 2.5+ and non-microM|PS changes in Release 3.
 List PRA implementation options.
3.01 December 10, 2010 « Change Security Classification for microM|PS AFP versions.
3.02 March 06, 2011 » Thereisno persietent interpretation of FPR values between instructions.

The interpretation comes from the instruction being executed.
* Clarification that the PS format availability is solely defined by the FIR.PS
bit.

MIPS® Architecture For Programmers Volume I-A: Introduction to the MIPS64® Architecture, Revision 5.04

117

Revision Date Description

3.50 September 20,2012 < Mention EVA load, store instructions
» Define Architecture version of UCA.
» |EEE2008, MAC2008, ABS2008, NAN2008 status bits for FPU.
* Mention SegCtl, TLBInv*, EVA in Intro.

5.00 December 14, 2012 « RS5 changes - mention MSA and VZ modules
* R5change - DSP and MT are now modules
» Generated QNAN values - changed to use more common bit patterns

5.01 December 15, 2012 < No technical content change:
» Updated cover for logos
» Updated copyright text.

5.02 April 12, 2013 * R5 changes: FR=1 64-hit FPU register model required is required, if float-
ing point is supported. Section 2.1.2.4 MIPSr5 Architecture. Section 2.2
Compliance and Subsetting. Section 2.8.5 FPU Registers. Chapter 5 Over-
view of the FPU Instruction Set: Section 5.1 Binary Compatibility. Section
5.5 Floating Point egister Types. Section 5.5.1 FPU Register Models.

* R5 change: if any R5 feature, other features must be R5. E.g. if VZ or MSA
isimplemented, then if floating point isimplemented then FR=1 must be
implemented. Section 2.2 Compliance and Subsetting.

* R5 changeretroactive to R3: removed FCSR.MCA2008 bit: no architectural
support for fused multiply add with no intermediate rounding. Section
2.1.2.3 MIPSr3 Architecture. Table 5.4 FIR Register Field Descriptions,
HAS2008 hit. Figure 5-12 FCSR register Format: MAC2008 bit removed.
Section 5.9.2 Arithmetic Instructions: paragraph titled “Arithmetic and
rounding behavior”.

* R5 change: UFR (User mode FR changing): UFR, UNFR, FIR.UFRR,
CTC1 and CFCL1 changes. Section 5.6 Floating Point Control Registers
(FCRs) - UFR and UNFR FCR numbers; Figure 5-11 FIR Register Format,
Table 5.6 FIR Register Field Descriptions - UFRP bit; Section 5.6.2 UFR
Register and Section 5.6.3 UNFR Register.

MIPS® Architecture For Programmers Volume I-A: Introduction to the MIPS64® Architecture, Revision 5.04 118

Revision History

Revision Date Description

5.03 August 21, 2013 + Resolved inconsistencies with regards to the availability of instructionsin
MIPS32r2: MADD fmt family (MADD.S, MADD.D, NMADD.S,
NMADD.D, MSUB.S, MSUB.D, NMSUB,S, NMSUB.D), RECIPfmt fam-
ily (RECIP.S, RECIPD, RSQRT.S, RSQRT.D), and indexed FP loads and
stores (LWXC1, LDXC1, SWXC1, SDXC1). The appendix section A.2
“Instruction Bit Encoding Tables”, shared between Volume | and Volume |l
of the ARM, was updated, in particular the new upright deltaA mark is
added to Table A.2 “ Symbols Used in the Instruction Encoding Tables”,
replacing the inverse deltamarking V for these instructions. Similar updates
made to microMIPS's corresponding sections. Instruction set descriptions
and pseudocode in Volume 11, Basic Instruction Set Architecture, updated.
These instructions are required in MIPS32r2 if an FPU isimplemented. .

» Misaligned memory access support for MSA: see Volume |1, Appendix B
“Misaligned Memory Accesses’.

» Has2008 isisrequired as of release 5 - Table 5.4, “FIR Register Descrip-
tions’.

» ABS2008 and NANZ2008 fields of Table 5.7 “FCSR RegisterField Descrip-
tions” were optional in release 3 and could be R/W , but as of release 5 are
required, read-only, and preset by hardware.

* FPU FCSR.FS Flush Subnormals/ Flush to Zero behaviour is made consis-
tent with M SA behaviour, in MSACSR.FS: Table 5.7, “FCSR Register Field
Descriptions’, updated. New section 5.8.1.4 “Alternate Flush to Zero
Underflow Handling”.

» Volumel, Section 2.2 “Compliance ad Subsetting” noted that the L format
isrequired in MIPS FPUSs, to be consistent with Table 5.4 “FIR Register
Field Definitions’ .

* Noted that UFR and UNFR can only be written with the value 0 from
GPRJ[0]. See section 5.6.5 “User accessible FPU Register model con-
trol (UFR, CP1 Control Register 1)” and section 5.6.5 “ User accessi-
ble Negated FPU Register model control (UNFR, CP1 Control
Register 4)”

5.04 November 20, 2013 + No changeto technical content.

119 MIPS® Architecture For Programmers Volume I-A: Introduction to the MIPS64® Architecture, Revision 5.04

Copyright © Wave Computing, Inc. All rights reserved.
www.wavecomp.ai

