
Document Number: MD00091
Revision 5.04

January 15, 2014

MIPS® Architecture For Programmers
Volume III: The MIPS64® and

microMIPS64™ Privileged Resource
Architecture

Unpublished rights (if any) reserved under the copyright laws of the United States of America and other countries.

This document contains information that is proprietary to MIPS Tech, LLC, a Wave Computing company (“MIPS”) and MIPS’
affiliates as applicable. Any copying, reproducing, modifying or use of this information (in whole or in part) that is not expressly
permitted in writing by MIPS or MIPS’ affiliates as applicable or an authorized third party is strictly prohibited. At a minimum,
this information is protected under unfair competition and copyright laws. Violations thereof may result in criminal penalties
and fines. Any document provided in source format (i.e., in a modifiable form such as in FrameMaker or Microsoft Word
format) is subject to use and distribution restrictions that are independent of and supplemental to any and all confidentiality
restrictions. UNDER NO CIRCUMSTANCES MAY A DOCUMENT PROVIDED IN SOURCE FORMAT BE DISTRIBUTED TO A THIRD
PARTY IN SOURCE FORMAT WITHOUT THE EXPRESS WRITTEN PERMISSION OF MIPS (AND MIPS’ AFFILIATES AS APPLICABLE)
reserve the right to change the information contained in this document to improve function, design or otherwise.

MIPS and MIPS’ affiliates do not assume any liability arising out of the application or use of this information, or of any error or
omission in such information. Any warranties, whether express, statutory, implied or otherwise, including but not limited to the
implied warranties of merchantability or fitness for a particular purpose, are excluded. Except as expressly provided in any
written license agreement from MIPS or an authorized third party, the furnishing of this document does not give recipient any
license to any intellectual property rights, including any patent rights, that cover the information in this document.

The information contained in this document shall not be exported, reexported, transferred, or released, directly or indirectly, in
violation of the law of any country or international law, regulation, treaty, Executive Order, statute, amendments or
supplements thereto. Should a conflict arise regarding the export, reexport, transfer, or release of the information contained in
this document, the laws of the United States of America shall be the governing law.

The information contained in this document constitutes one or more of the following: commercial computer software,
commercial computer software documentation or other commercial items. If the user of this information, or any related
documentation of any kind, including related technical data or manuals, is an agency, department, or other entity of the United
States government ("Government"), the use, duplication, reproduction, release, modification, disclosure, or transfer of this
information, or any related documentation of any kind, is restricted in accordance with Federal Acquisition Regulation 12.212
for civilian agencies and Defense Federal Acquisition Regulation Supplement 227.7202 for military agencies. The use of this
information by the Government is further restricted in accordance with the terms of the license agreement(s) and/or applicable
contract terms and conditions covering this information from MIPS Technologies or an authorized third party.

MIPS, MIPS I, MIPS II, MIPS III, MIPS IV, MIPS V, MIPSr3, MIPS32, MIPS64, microMIPS32, microMIPS64, MIPS-3D, MIPS16,
MIPS16e, MIPS-Based, MIPSsim, MIPSpro, MIPS-VERIFIED, Aptiv logo, microAptiv logo, interAptiv logo, microMIPS logo, MIPS
Technologies logo, MIPS-VERIFIED logo, proAptiv logo, 4K, 4Kc, 4Km, 4Kp, 4KE, 4KEc, 4KEm, 4KEp, 4KS, 4KSc, 4KSd, M4K, M14K,
5K, 5Kc, 5Kf, 24K, 24Kc, 24Kf, 24KE, 24KEc, 24KEf, 34K, 34Kc, 34Kf, 74K, 74Kc, 74Kf, 1004K, 1004Kc, 1004Kf, 1074K, 1074Kc,
1074Kf, R3000, R4000, R5000, Aptiv, ASMACRO, Atlas, "At the core of the user experience.", BusBridge, Bus Navigator, CLAM,
CorExtend, CoreFPGA, CoreLV, EC, FPGA View, FS2, FS2 FIRST SILICON SOLUTIONS logo, FS2 NAVIGATOR, HyperDebug,
HyperJTAG, IASim, iFlowtrace, interAptiv, JALGO, Logic Navigator, Malta, MDMX, MED, MGB, microAptiv, microMIPS, Navigator,
OCI, PDtrace, the Pipeline, proAptiv, Pro Series, SEAD-3, SmartMIPS, SOC-it, and YAMON are trademarks or registered
trademarks of MIPS and MIPS’ affiliates as applicable in the United States and other countries.

All other trademarks referred to herein are the property of their respective owners.

aLt{ϯ !ǊŎƘƛǘŜŎǘǳǊŜ CƻǊ tǊƻƎǊŀƳƳŜǊǎ ±ƻƭǳƳŜ LLLΥ ¢ƘŜ aLt{спϯ ŀƴŘ ƳƛŎǊƻaLt{спϰ tǊƛǾƛƭŜƎŜŘ wŜǎƻǳǊŎŜ !ǊŎƘƛǘŜŎǘǳǊŜΣ wŜǾƛǎƛƻƴ рΦлп

3MIPS® Architecture For Programmers Volume III: The MIPS64® and microMIPS64™ Privileged Resource Architecture, Revi-
sion 5.04

MIPS® Architecture For Programmers Volume III: The MIPS64® and microMIPS64™ Privileged Resource Architecture, Revi-
sion 5.04 4

Table of Contents

Chapter 1: About This Book .. 14
1.1: Typographical Conventions ... 14

1.1.1: Italic Text.. 15
1.1.2: Bold Text .. 15
1.1.3: Courier Text ... 15

1.2: UNPREDICTABLE and UNDEFINED ... 15
1.2.1: UNPREDICTABLE... 15
1.2.2: UNDEFINED .. 16
1.2.3: UNSTABLE .. 16

1.3: Special Symbols in Pseudocode Notation... 16
1.4: For More Information ... 19

Chapter 2: The MIPS64 and microMIPS64 Privileged Resource Architecture 20
2.1: Introduction.. 20
2.2: The MIPS Coprocessor Model .. 20

2.2.1: CP0 - The System Coprocessor .. 20
2.2.2: CP0 Registers .. 20

Chapter 3: MIPS64 and microMIPS64 Operating Modes... 22
3.1: Debug Mode ... 22
3.2: Kernel Mode .. 22
3.3: Supervisor Mode ... 23
3.4: User Mode ... 23
3.5: Other Modes.. 23

3.5.1: 64-bit Address Enable.. 23
3.5.2: 64-bit Operations Enable ... 23
3.5.3: 64-bit Floating Point Operations Enable .. 24
3.5.4: 64-bit FPR Enable.. 24
3.5.5: Coprocessor 0 Enable.. 24
3.5.6: ISA Mode ... 25

Chapter 4: Virtual Memory ... 26
4.1: Differences between Releases of the Architecture.. 26

4.1.1: Virtual Memory ... 26
4.1.2: Physical Memory.. 26
4.1.3: Protection of Virtual Memory Pages... 26
4.1.4: Context Register .. 27
4.1.5: Segmentation Control .. 27
4.1.6: Enhanced Virtual Addressing... 27

4.2: Terminology... 27
4.2.1: Address Space... 27
4.2.2: Segment and Segment Size (SEGBITS) ... 27
4.2.3: Physical Address Size (PABITS) ... 28

4.3: Virtual Address Spaces ... 28
4.4: Compliance.. 31
4.5: Access Control as a Function of Address and Operating Mode.. 31

5MIPS® Architecture For Programmers Volume III: The MIPS64® and microMIPS64™ Privileged Resource Architecture, Revi-
sion 5.04

4.6: Address Translation and Cacheability & Coherency Attributes for the kseg0 and kseg1 Segments 33
4.7: Address Translation and Cacheability and Coherency Attributes for the xkphys Segment....................... 34
4.8: Address Translation for the kuseg Segment when StatusERL = 1 ... 37
4.9: Special Behavior for the kseg3 Segment when DebugDM = 1... 37
4.10: Special Behavior for Data References in User Mode with StatusUX = 0 ... 37
4.11: TLB-Based Virtual Address Translation .. 38

4.11.1: Address Space Identifiers (ASID) .. 38
4.11.2: TLB Organization ... 38
4.11.3: TLB Initialization... 39
4.11.4: Address Translation ... 42

4.12: Segmentation Control.. 47
4.12.1: Exception Behavior under Segmentation Control .. 52

4.13: Enhanced Virtual Addressing .. 57
4.13.1: EVA Segmentation Control Configuration.. 57
4.13.2: Enhanced Virtual Address (EVA) Instructions.. 59

4.14: Hardware Page Table Walker ... 61
4.14.1: Multi-Level Page Table support ... 62
4.14.2: PTE and Directory Entry Format .. 66
4.14.3: Hardware page table walking process ... 68

Chapter 5: Common Device Memory Map.. 75
5.1: CDMMBase Register... 75
5.2: CDMM - Access Control and Device Register Blocks ... 76

5.2.1: Access Control and Status Registers... 77

Chapter 6: Interrupts and Exceptions... 80
6.1: Interrupts ... 80

6.1.1: Interrupt Modes .. 81
6.1.2: Generation of Exception Vector Offsets for Vectored Interrupts .. 90

6.2: Exceptions ... 91
6.2.1: Exception Priority ... 92
6.2.2: Exception Vector Locations.. 93
6.2.3: General Exception Processing... 95
6.2.4: EJTAG Debug Exception ... 98
6.2.5: Reset Exception ... 98
6.2.6: Soft Reset Exception.. 99
6.2.7: Non Maskable Interrupt (NMI) Exception .. 100
6.2.8: Machine Check Exception.. 101
6.2.9: Address Error Exception .. 101
6.2.10: TLB Refill and XTLB Refill Exceptions ... 102
6.2.11: Execute-Inhibit Exception... 103
6.2.12: Read-Inhibit Exception ... 104
6.2.13: TLB Invalid Exception .. 105
6.2.14: TLB Modified Exception ... 106
6.2.15: Cache Error Exception ... 107
6.2.16: Bus Error Exception ... 108
6.2.17: Integer Overflow Exception .. 108
6.2.18: Trap Exception ... 109
6.2.19: System Call Exception ... 109
6.2.20: Breakpoint Exception ... 109
6.2.21: Reserved Instruction Exception ... 109
6.2.22: Coprocessor Unusable Exception.. 111
6.2.23: MDMX Unusable Exception ... 111

MIPS® Architecture For Programmers Volume III: The MIPS64® and microMIPS64™ Privileged Resource Architecture, Revi-
sion 5.04 6

6.2.24: Floating Point Exception .. 111
6.2.25: Coprocessor 2 Exception ... 112
6.2.26: Watch Exception .. 112
6.2.27: Interrupt Exception ... 113

Chapter 7: GPR Shadow Registers ... 114
7.1: Introduction to Shadow Sets.. 114
7.2: Support Instructions... 115

Chapter 8: CP0 Hazards ... 116
8.1: Introduction.. 116
8.2: Types of Hazards .. 116

8.2.1: Possible Execution Hazards .. 116
8.2.2: Possible Instruction Hazards.. 118

8.3: Hazard Clearing Instructions and Events .. 118
8.3.1: MIPS64 Instruction Encoding... 119
8.3.2: microMIPS64 Instruction Encoding .. 120

Chapter 9: Coprocessor 0 Registers .. 122
9.1: Coprocessor 0 Register Summary .. 122
9.2: Notation ... 128
9.3: Writing CPU Registers... 128
9.4: Index Register (CP0 Register 0, Select 0)... 129
9.5: Random Register (CP0 Register 1, Select 0).. 130
9.6: EntryLo0, EntryLo1 (CP0 Registers 2 and 3, Select 0) ... 131
9.7: Context Register (CP0 Register 4, Select 0) ... 141
9.8: ContextConfig Register (CP0 Register 4, Select 1)... 145
9.9: UserLocal Register (CP0 Register 4, Select 2) ... 147
9.10: XContextConfig Register (CP0 Register 4, Select 3) .. 148
9.11: PageMask Register (CP0 Register 5, Select 0) .. 150
9.12: PageGrain Register (CP0 Register 5, Select 1) .. 153
9.13: SegCtl0 (CP0 Register 5, Select 2) ... 159
9.14: SegCtl1 (CP0 Register 5, Select 3) ... 159
9.15: SegCtl2 (CP0 Register 5, Select 4) ... 159

9.15.1: xkphys access mode override.. 161
9.16: PWBase Register (CP0 Register 5, Select 5) ... 165
9.17: PWField Register (CP0 Register 5, Select 6).. 165
9.18: PWSize Register (CP0 Register 5, Select 7)... 168
9.19: Wired Register (CP0 Register 6, Select 0) .. 174
9.20: PWCtl Register (CP0 Register 6, Select 6) ... 177
9.21: HWREna Register (CP0 Register 7, Select 0) .. 181
9.22: BadVAddr Register (CP0 Register 8, Select 0) ... 183
9.23: BadInstr Register (CP0 Register 8, Select 1) .. 185
9.24: BadInstrP Register (CP0 Register 8, Select 2).. 187
9.25: Count Register (CP0 Register 9, Select 0).. 188
9.26: Reserved for Implementations (CP0 Register 9, Selects 6 and 7) .. 188
9.27: EntryHi Register (CP0 Register 10, Select 0).. 189
9.28: Compare Register (CP0 Register 11, Select 0)... 192
9.29: Reserved for Implementations (CP0 Register 11, Selects 6 and 7) .. 192
9.30: Status Register (CP Register 12, Select 0) ... 193
9.31: IntCtl Register (CP0 Register 12, Select 1) ... 201
9.32: SRSCtl Register (CP0 Register 12, Select 2).. 204

7MIPS® Architecture For Programmers Volume III: The MIPS64® and microMIPS64™ Privileged Resource Architecture, Revi-
sion 5.04

9.33: SRSMap Register (CP0 Register 12, Select 3) ... 207
9.34: Cause Register (CP0 Register 13, Select 0) ... 208
9.35: NestedExc (CP0 Register 13, Select 5) .. 213
9.36: Exception Program Counter (CP0 Register 14, Select 0) ... 214

9.36.1: Special Handling of the EPC Register in Processors that Implement MIPS16e ASE or microMIPS64
Base Architecture... 214

9.37: Nested Exception Program Counter (CP0 Register 14, Select 2) ... 217
9.38: Processor Identification (CP0 Register 15, Select 0) .. 218
9.39: EBase Register (CP0 Register 15, Select 1)... 220
9.40: CDMMBase Register (CP0 Register 15, Select 2) .. 223
9.41: CMGCRBase Register (CP0 Register 15, Select 3).. 225
9.42: Configuration Register (CP0 Register 16, Select 0) .. 226
9.43: Configuration Register 1 (CP0 Register 16, Select 1) ... 229
9.44: Configuration Register 2 (CP0 Register 16, Select 2) ... 233
9.45: Configuration Register 3 (CP0 Register 16, Select 3) ... 236
9.46: Configuration Register 4 (CP0 Register 16, Select 4) ... 245
9.47: Configuration Register 5 (CP0 Register 16, Select 5) ... 251
9.48: Reserved for Implementations (CP0 Register 16, Selects 6 and 7) .. 255
9.49: Load Linked Address (CP0 Register 17, Select 0) .. 256
9.50: WatchLo Register (CP0 Register 18) .. 258
9.51: WatchHi Register (CP0 Register 19)... 260
9.52: XContext Register (CP0 Register 20, Select 0)... 262
9.53: Reserved for Implementations (CP0 Register 22, all Select values)... 265
9.54: Debug Register (CP0 Register 23, Select 0)... 266
9.55: Debug2 Register (CP0 Register 23, Select 6)... 267
9.56: DEPC Register (CP0 Register 24) .. 268

9.56.1: Special Handling of the DEPC Register in Processors That Implement the MIPS16e ASE or
microMIPS64 Base Architecture .. 268

9.57: Performance Counter Register (CP0 Register 25) .. 269
9.58: ErrCtl Register (CP0 Register 26, Select 0) .. 274
9.59: CacheErr Register (CP0 Register 27, Select 0) .. 275
9.60: TagLo Register (CP0 Register 28, Select 0, 2) ... 276
9.61: DataLo Register (CP0 Register 28, Select 1, 3).. 278
9.62: TagHi Register (CP0 Register 29, Select 0, 2).. 279
9.63: DataHi Register (CP0 Register 29, Select 1, 3) .. 280
9.64: ErrorEPC (CP0 Register 30, Select 0) .. 281

9.64.1: Special Handling of the ErrorEPC Register in Processors That Implement the MIPS16e ASE or
microMIPS64 Base Architecture .. 281

9.65: DESAVE Register (CP0 Register 31).. 283
9.66: KScratchn Registers (CP0 Register 31, Selects 2 to 7) .. 285

Appendix A: Alternative MMU Organizations .. 286
A.1: Fixed Mapping MMU ... 286

A.1.1: Fixed Address Translation ... 286
A.1.2: Cacheability Attributes ... 289
A.1.3: Changes to the CP0 Register Interface ... 290

A.2: Block Address Translation .. 290
A.2.1: BAT Organization .. 290
A.2.2: Address Translation... 291
A.2.3: Changes to the CP0 Register Interface .. 292

A.3: Dual Variable-Page-Size and Fixed-Page-Size TLBs... 292
A.3.1: MMU Organization... 292
A.3.2: Programming Interface .. 293

MIPS® Architecture For Programmers Volume III: The MIPS64® and microMIPS64™ Privileged Resource Architecture, Revi-
sion 5.04 8

A.3.3: Changes to the TLB Instructions ... 295
A.3.4: Changes to the COP0 Registers ... 296
A.3.5: Software Compatibility ... 297

Appendix B: Revision History ... 300

9MIPS® Architecture For Programmers Volume III: The MIPS64® and microMIPS64™ Privileged Resource Architecture, Revi-
sion 5.04

List of Figures

Figure 4.1: Virtual Address Space .. 29
Figure 4.2: Address Interpretation for the xkphys Segment ... 34
Figure 4.3: Contents of a TLB Entry ... 39
Figure 4.4: Legacy addressability ... 57
Figure 4.5: EVA addressability.. 58
Figure 4.6: Legacy to EVA address configuration... 58
Figure 4.7: Page Table Walk Process... 62
Figure 4.8: Page Table Walk Process (without Base Dir) & COP0 Control fields.. 63
Figure 4.9: 8-byte Leaf PTE.. 67
Figure 4.10: 8-Byte Non-leaf PTE Options.. 67
Figure 4.11: 8-Byte Rotated PTE Formats.. 67
Figure 5.1: Example Organization of the CDMM .. 77
Figure 5.2: Access Control and Status Register ... 77
Figure 6.1: Interrupt Generation for Vectored Interrupt Mode... 86
Figure 6.2: Interrupt Generation for External Interrupt Controller Interrupt Mode... 89
Figure 9.1: Index Register Format .. 129
Figure 9.2: Random Register Format.. 130
Figure 9-3: EntryLo0, EntryLo1 Register Format in Release 1 of the Architecture ... 131
Figure 9-4: EntryLo0, EntryLo1 Register Format in Release 2 of the Architecture ... 132
Figure 9-5: EntryLo0, EntryLo1 Register Format in Release 3 of the Architecture when Accessed with DMFC0 &
DMTC0 Instructions .. 134
Figure 9-6: EntryLo0, EntryLo1 Register Format in Release 3 of the Architecture when Accessed using MFC0 and
MTC0 Instructions... 136
Figure 9.7: Context Register Format when Config3CTXTC=0 and Config3SM=0.. 141
Figure 9.8: Context Register Format when Config3CTXTC=1 or Config3SM=1... 142
Figure 9.9: ContextConfig Register Format ... 146
Figure 9.10: UserLocal Register Format ... 147
Figure 9.11: XContextConfig Register Format ... 149
Figure 9.12: PageMask Register Format if ConfigBPG=0 .. 150
Figure 9.13: PageMask Register Format if ConfigBPG=1 .. 150
Figure 9-14: PageGrain Register Format.. 153
Figure 9.15: SegCtl0 Register Format (CP0 Register 5, Select 2).. 160
Figure 9.16: SegCtl1 Register Format (CP0 Register 5, Select 3).. 160
Figure 9.17: SegCtl2 Register Format (CP0 Register 5, Select 4).. 161
Figure 9.18: PWBase Register Format ... 165
Figure 9.19: PWField Register Format.. 167
Figure 9.20: PWSize Register Format .. 170
Figure 9.21: Wired And Random Entries In The TLB.. 174
Figure 9.22: Wired Register Format.. 174
Figure 9.23: PWCtl Register Format ... 178
Figure 9.24: HWREna Register Format .. 181
Figure 9.25: BadVAddr Register Format... 183
Figure 9.26: BadInstr Register Format.. 185
Figure 9.27: BadInstrP Register Format ... 187
Figure 9.28: Count Register Format.. 188
Figure 9.29: EntryHi Register Format ... 189
Figure 9.30: Compare Register Format .. 192

MIPS® Architecture For Programmers Volume III: The MIPS64® and microMIPS64™ Privileged Resource Architecture, Revi-
sion 5.04 10

Figure 9.31: Status Register Format ... 193
Figure 9.32: IntCtl Register Format... 201
Figure 9.33: SRSCtl Register Format ... 204
Figure 9.34: SRSMap Register Format... 207
Figure 9.35: Cause Register Format... 208
Figure 9.36: NestedExc Register Format.. 213
Figure 9.37: EPC Register Format.. 214
Figure 9.38: NestedEPC Register Format .. 217
Figure 9.39: PRId Register Format ... 218
Figure 9.40: EBase Register Format... 220
Figure 9.41: EBase Register Format... 221
Figure 9.42: CDMMBase Register .. 224
Figure 9.43: CMGCRBase Register.. 225
Figure 9.44: Config Register Format... 226
Figure 9.45: Config1 Register Format... 229
Figure 9.46: Config2 Register Format... 233
Figure 9-47: Config3 Register Format... 236
Figure 9.48: Config4 Register Format... 245
Figure 9.49: Config5 Register Format... 251
Figure 9-50: LLAddr Register Format (pre Release 5).. 256
Figure 9-51: LLAddr Register Format (Release 5)... 256
Figure 9.52: WatchLo Register Format ... 258
Figure 9.53: WatchHi Register Format.. 260
Figure 9.54: XContext Register Format when Config3CTXTC=0 ... 262
Figure 9.55: XContext Register Format when Config3CTXTC=1 ... 264
Figure 9.56: Performance Counter Control Register Format .. 269
Figure 9.57: Performance Counter Counter Register Format ... 272
Figure 9-58: Example TagLo Register Format.. 276
Figure 9.59: ErrorEPC Register Format.. 281
Figure 9.60: KScratchn Register Format... 285
Figure A.1: Memory Mapping when ERL = 0 .. 288
Figure A.2: Memory Mapping when ERL = 1 .. 289
Figure A.3: Config Register Additions... 290
Figure A.4: Contents of a BAT Entry... 291

11MIPS® Architecture For Programmers Volume III: The MIPS64® and microMIPS64™ Privileged Resource Architecture, Re-
vision 5.04

List of Tables

Table 1.1: Symbols Used in Instruction Operation Statements... 16
Table 4.1: Virtual Memory Address Spaces.. 30
Table 4.2: Address Space Access and TLB Refill Selection as a Function of Operating Mode 31
Table 4.3: Address Translation and Cacheability and Coherency Attributes for the kseg0 and kseg1 Segments . 33
Table 4.4: Address Translation and Cacheability Attributes for the xkphys Segment... 34
Table 4.5: Physical Address Generation... 47
Table 4.6: Segment Configuration for 3GB EVA in 32-bit Compatibility region .. 59
Table 4.7: EVA Load/Store Instructions.. 59
Table 4.8: Address translation behavior for EVA load/store instructions .. 60
Table 4.9: Address translation behavior for ordinary load/store instructions .. 60
Table 5.1: Access Control and Status Register Field Descriptions... 77
Table 6.1: Interrupt Modes.. 81
Table 6.2: Request for Interrupt Service in Interrupt Compatibility Mode ... 82
Table 6.3: Relative Interrupt Priority for Vectored Interrupt Mode... 85
Table 6.4: Exception Vector Offsets for Vectored Interrupts... 90
Table 6.5: Interrupt State Changes Made Visible by EHB .. 91
Table 6.6: Priority of Exceptions ... 92
Table 6.7: Exception Type Characteristics.. 93
Table 6.8: Exception Vector Base Addresses... 94
Table 6.9: Exception Vector Offsets ... 94
Table 6.10: Exception Vectors .. 95
Table 6.11: Value Stored in EPC, ErrorEPC, or DEPC on an Exception.. 96
Table 7.1: Instructions Supporting Shadow Sets .. 115
Table 8.1: Possible Execution Hazards .. 116
Table 8.2: Possible Instruction Hazards.. 118
Table 8.3: Hazard Clearing Instructions.. 118
Table 9.1: Coprocessor 0 Registers in Numerical Order .. 122
Table 9.2: Read/Write Bit Field Notation... 128
Table 9.3: Index Register Field Descriptions .. 129
Table 9.4: Random Register Field Descriptions.. 130
Table 9.5: EntryLo0, EntryLo1 Register Field Descriptions in Release 1 of the Architecture 131
Table 9.6: EntryLo0, EntryLo1 Register Field Descriptions in Release 2 of the Architecture 132
Table 9.7: EntryLo0, EntryLo1 Register Field Descriptions in Release 3 of the Architecture when Accessed with
DMFC0 and DMTC0 Instructions.. 134
Table 9.8: EntryLo0, EntryLo1 Register Field Descriptions in Release 3 of the Architecture when Accessed using
MFC0 and MTC0 Instructions ... 137
Table 10:: EntryLo0, EntryLo1 Register Field Descriptions in Release 5 of the Architecture 138
Table 9.1: EntryLo Field Widths as a Function of PABITS ... 139
Table 9.2: Cacheability and Coherency Attributes.. 140
Table 9.3: Context Register Field Descriptions when Config3CTXTC=0 and Config3SM=0................................ 141
Table 9.4: Context Register Field Descriptions when Config3CTXTC=1 or Config3SM=1.................................. 142
Table 9.5: ContextConfig Register Field Descriptions ... 146
Table 9.6: Recommended ContextConfig Values... 146
Table 9.7: UserLocal Register Field Descriptions ... 147
Table 9.8: XContextConfig Register Field Descriptions ... 149
Table 9.9: PageMask Register Field Descriptions .. 150
Table 9.10: Values for the Mask and MaskX1 Fields of the PageMask Register ... 151

MIPS® Architecture For Programmers Volume III: The MIPS64® and microMIPS64™ Privileged Resource Architecture, Revi-
sion 5.04 12

Table 9.11: PageGrain Register Field Descriptions.. 153
Table 9.12: SegCtl0 Register Field Descriptions .. 160
Table 9.13: SegCtl1 Register Field Descriptions .. 160
Table 9.14: SegCtl2 Register Field Descriptions .. 161
Table 9.15: XR indexing of MIPS64 xkphys address regions ... 161
Table 9.16: CFG (Segment Configuration) Field Description.. 162
Table 9.17: Segment Configuration Access Control Modes ... 162
Table 9.18: Segment Configuration (32-bit Compatibility Region) legacy reset state... 163
Table 9.19: 32-bit Compatibility Segment Configuration partitioning of MIPS64 address space.......................... 163
Table 9.20: PWBase Register Field Descriptions ... 165
Table 9.21: PWField Register Field Descriptions.. 167
Table 9.22: PWSize Register Field Descriptions .. 170
Table 9.23: PS/PTEW Usage ... 172
Table 9.24: Wired Register Field Descriptions.. 175
Table 9.25: PWCtl Register Field Descriptions ... 178
Table 9.26: PWCtl XK/XS/XU Register Field configurations... 179
Table 9.27: HugePg Field and Huge Page configurations.. 179
Table 9.28: Huge Page representation in Directory Levels... 180
Table 9.29: HWREna Register Field Descriptions .. 181
Table 9.30: RDHWR Register Numbers ... 182
Table 9.31: BadVAddr Register Field Descriptions... 183
Table 9.32: BadInstr Register Field Descriptions.. 185
Table 9.33: BadInstrP Register Field Descriptions ... 187
Table 9.34: Count Register Field Descriptions.. 188
Table 9.35: EntryHi Register Field Descriptions ... 190
Table 9.36: Compare Register Field Descriptions .. 192
Table 9.37: Status Register Field Descriptions... 193
Table 9.38: IntCtl Register Field Descriptions... 201
Table 9.39: SRSCtl Register Field Descriptions ... 204
Table 9.40: Sources for new SRSCtlCSS on an Exception or Interrupt ... 205
Table 9.41: SRSMap Register Field Descriptions... 207
Table 9.42: Cause Register Field Descriptions... 208
Table 9.43: Cause Register ExcCode Field .. 211
Table 9.44: NestedExc Register Field Descriptions.. 213
Table 9.45: EPC Register Field Descriptions.. 214
Table 9.46: NestedEPC Register Field Descriptions .. 217
Table 9.47: PRId Register Field Descriptions ... 218
Table 9.48: EBase Register Field Descriptions... 220
Table 9.49: EBase Register Field Descriptions... 221
Table 9.50: Conditions Under Which EBase15..12 Must Be Zero .. 222
Table 9.51: CDMMBase Register Field Descriptions.. 224
Table 9.52: CMGCRBase Register Field Descriptions ... 225
Table 9.53: Config Register Field Descriptions... 226
Table 9.54: Config1 Register Field Descriptions... 229
Table 9.55: Config2 Register Field Descriptions... 233
Table 9.56: Config3 Register Field Descriptions... 236
Table 9.57: Config4 Register Field Descriptions... 245
Table 9.58: Config5 Register Field Descriptions... 251
Table 9.59: SegCtl0K Segment CCA Determination... 254
Table 9.60: LLAddr Register Field Descriptions (pre Release 5).. 256
Table 10:: LLAddr Register Field Descriptions (Release 5) .. 257
Table 9.1: WatchLo Register Field Descriptions... 258
Table 9.2: WatchHi Register Field Descriptions.. 260

13MIPS® Architecture For Programmers Volume III: The MIPS64® and microMIPS64™ Privileged Resource Architecture, Re-
vision 5.04

Table 9.3: XContext Register Fields when Config3CTXTC=0 .. 262
Table 9.4: XContext Register Field Descriptions when Config3CTXTC=1 .. 264
Table 9.5: Example Performance Counter Usage of the PerfCnt CP0 Register... 269
Table 9.6: Performance Counter Control Register Field Descriptions .. 270
Table 9.7: Performance Counter Counter Register Field Descriptions ... 273
Table 10:: Example TagLo Register Field Descriptions .. 276
Table 9.1: ErrorEPC Register Field Descriptions.. 281
Table 9.2: KScratchn Register Field Descriptions... 285
Table A.1: Physical Address Generation from Virtual Addresses... 286
Table A.2: Config Register Field Descriptions .. 290
Table A.3: BAT Entry Assignments... 291

Chapter 1

MIPS® Architecture For Programmers Volume III: The MIPS64® and microMIPS64™ Privileged Resource Architecture, Revi-
sion 5.04 14

About This Book

The MIPS® Architecture For Programmers Volume III: The MIPS64® and microMIPS64™ Privileged Resource
Architecture comes as part of a multi-volume set.

• Volume I-A describes conventions used throughout the document set, and provides an introduction to the
MIPS64® Architecture

• Volume I-B describes conventions used throughout the document set, and provides an introduction to the
microMIPS64™ Architecture

• Volume II-A provides detailed descriptions of each instruction in the MIPS64® instruction set

• Volume II-B provides detailed descriptions of each instruction in the microMIPS64™ instruction set

• Volume III describes the MIPS64® and microMIPS64™ Privileged Resource Architecture which defines an
governs the behavior of the privileged resources included in a MIPS® processor implementation

• Volume IV-a describes the MIPS16e™ Application-Specifi Extension to the MIPS64® Architecture. Beginning
with Release 3 of the Architecture, microMIPS is the preferred solution for smaller code size.

• Volume IV-b describes the MDMX™ Application-Specific Extension to the MIPS64® Architecture an
microMIPS64™. With Release 5 of the Architecture, MDMX is deprecated. MDMX and MSA can not be imple-
mented at the same time.

• Volume IV-c describes the MIPS-3D® Application-Specific Extension to the MIPS® Architectur

• Volume IV-d describes the SmartMIPS®Application-Specific Extension to the MIPS32® Architecture and th
microMIPS32™ Architecture and is not applicable to the MIPS64® document set nor the microMIPS64™ docu-
ment set.

• Volume IV-e describes the MIPS® DSP Module to the MIPS® Architecture

• Volume IV-f describes the MIPS® MT Module to the MIPS® Architecture

• Volume IV-h describes the MIPS® MCU Application-Specific Extension to the MIPS® Architectur

• Volume IV-i describes the MIPS® Virtualization Module to the MIPS® Architecture

• Volume IV-j describes the MIPS® SIMD Architecture Module to the MIPS® Architecture

1.1 Typographical Conventions

This section describes the use of italic, bold and courier fonts in this book.

 About This Book

15MIPS® Architecture For Programmers Volume III: The MIPS64® and microMIPS64™ Privileged Resource Architecture, Re-
vision 5.04

1.1.1 Italic Text

• is used for emphasis

• is used for bits, fields, registers, that are important from a software perspective (for instance, address bits used by
software, and programmable fields and r gisters), and various floating point instruction formats, such as S, D,
and PS

• is used for the memory access types, such as cached and uncached

1.1.2 Bold Text

• represents a term that is being defined

• is used for bits and fields that are important from a hardware perspective (for instance, register bits, which are
not programmable but accessible only to hardware)

• is used for ranges of numbers; the range is indicated by an ellipsis. For instance, 5..1 indicates numbers 5 through
1

• is used to emphasize UNPREDICTABLE and UNDEFINED behavior, as defined bel w.

1.1.3 Courier Text

Courier fi ed-width font is used for text that is displayed on the screen, and for examples of code and instruction
pseudocode.

1.2 UNPREDICTABLE and UNDEFINED

The terms UNPREDICTABLE and UNDEFINED are used throughout this book to describe the behavior of the
processor in certain cases. UNDEFINED behavior or operations can occur only as the result of executing instructions
in a privileged mode (i.e., in Kernel Mode or Debug Mode, or with the CP0 usable bit set in the Status register).
Unprivileged software can never cause UNDEFINED behavior or operations. Conversely, both privileged and
unprivileged software can cause UNPREDICTABLE results or operations.

1.2.1 UNPREDICTABLE

UNPREDICTABLE results may vary from processor implementation to implementation, instruction to instruction,
or as a function of time on the same implementation or instruction. Software can never depend on results that are
UNPREDICTABLE. UNPREDICTABLE operations may cause a result to be generated or not. If a result is gener-
ated, it is UNPREDICTABLE. UNPREDICTABLE operations may cause arbitrary exceptions.

UNPREDICTABLE results or operations have several implementation restrictions:

• Implementations of operations generating UNPREDICTABLE results must not depend on any data source
(memory or internal state) which is inaccessible in the current processor mode

• UNPREDICTABLE operations must not read, write, or modify the contents of memory or internal state which
is inaccessible in the current processor mode. For example, UNPREDICTABLE operations executed in user
mode must not access memory or internal state that is only accessible in Kernel Mode or Debug Mode or in
another process

1.3 Special Symbols in Pseudocode Notation

MIPS® Architecture For Programmers Volume III: The MIPS64® and microMIPS64™ Privileged Resource Architecture, Revi-
sion 5.04 16

• UNPREDICTABLE operations must not halt or hang the processor

1.2.2 UNDEFINED

UNDEFINED operations or behavior may vary from processor implementation to implementation, instruction to
instruction, or as a function of time on the same implementation or instruction. UNDEFINED operations or behavior
may vary from nothing to creating an environment in which execution can no longer continue. UNDEFINED opera-
tions or behavior may cause data loss.

UNDEFINED operations or behavior has one implementation restriction:

• UNDEFINED operations or behavior must not cause the processor to hang (that is, enter a state from which
there is no exit other than powering down the processor). The assertion of any of the reset signals must restore
the processor to an operational state

1.2.3 UNSTABLE

UNSTABLE results or values may vary as a function of time on the same implementation or instruction. Unlike
UNPREDICTABLE values, software may depend on the fact that a sampling of an UNSTABLE value results in a
legal transient value that was correct at some point in time prior to the sampling.

UNSTABLE values have one implementation restriction:

• Implementations of operations generating UNSTABLE results must not depend on any data source (memory or
internal state) which is inaccessible in the current processor mode

1.3 Special Symbols in Pseudocode Notation

In this book, algorithmic descriptions of an operation are described as pseudocode in a high-level language notation
resembling Pascal. Special symbols used in the pseudocode notation are listed in Table 1.1.

Table 1.1 Symbols Used in Instruction Operation Statements

Symbol Meaning

← Assignment

=, ≠ Tests for equality and inequality

|| Bit string concatenation

xy A y-bit string formed by y copies of the single-bit value x

b#n A constant value n in base b. For instance 10#100 represents the decimal value 100, 2#100 represents the
binary value 100 (decimal 4), and 16#100 represents the hexadecimal value 100 (decimal 256). If the "b#"
prefix is omitted, the de ault base is 10.

0bn A constant value n in base 2. For instance 0b100 represents the binary value 100 (decimal 4).

0xn A constant value n in base 16. For instance 0x100 represents the hexadecimal value 100 (decimal 256).

xy z Selection of bits y through z of bit string x. Little-endian bit notation (rightmost bit is 0) is used. If y is less
than z, this expression is an empty (zero length) bit string.

+, − 2’s complement or floating point arithmetic: addition, subtractio

 About This Book

17MIPS® Architecture For Programmers Volume III: The MIPS64® and microMIPS64™ Privileged Resource Architecture, Re-
vision 5.04

*, × 2’s complement or floating point multiplication (both used for either

div 2’s complement integer division

mod 2’s complement modulo

/ Floating point division

< 2’s complement less-than comparison

> 2’s complement greater-than comparison

≤ 2’s complement less-than or equal comparison

≥ 2’s complement greater-than or equal comparison

nor Bitwise logical NOR

xor Bitwise logical XOR

and Bitwise logical AND

or Bitwise logical OR

not Bitwise inversion

&& Logical (non-Bitwise) AND

<< Logical Shift left (shift in zeros at right-hand-side)

>> Logical Shift right (shift in zeros at left-hand-side)

GPRLEN The length in bits (32 or 64) of the CPU general-purpose registers

GPR[x] CPU general-purpose register x. The content of GPR[0] is always zero. In Release 2 of the Architecture,
GPR[x] is a short-hand notation for SGPR[SRSCtlCSS, x].

SGPR[s,x] In Release 2 of the Architecture and subsequent releases, multiple copies of the CPU general-purpose regis-
ters may be implemented. SGPR[s,x] refers to GPR set s, register x.

FPR[x] Floating Point operand register x

FCC[CC] Floating Point condition code CC. FCC[0] has the same value as COC[1].

FPR[x] Floating Point (Coprocessor unit 1), general register x

CPR[z,x,s] Coprocessor unit z, general register x, select s

CP2CPR[x] Coprocessor unit 2, general register x

CCR[z,x] Coprocessor unit z, control register x

CP2CCR[x] Coprocessor unit 2, control register x

COC[z] Coprocessor unit z condition signal

Xlat[x] Translation of the MIPS16e GPR number x into the corresponding 32-bit GPR number

BigEndianMem Endian mode as configured at chip reset (→Little-Endian, 1 → Big-Endian). Specifies the endianness o
the memory interface (see LoadMemory and StoreMemory pseudocode function descriptions), and the endi-
anness of Kernel and Supervisor mode execution.

BigEndianCPU The endianness for load and store instructions (0 → Little-Endian, 1 → Big-Endian). In User mode, this
endianness may be switched by setting the RE bit in the Status register. Thus, BigEndianCPU may be com-
puted as (BigEndianMem XOR ReverseEndian).

ReverseEndian Signal to reverse the endianness of load and store instructions. This feature is available in User mode only,
and is implemented by setting the RE bit of the Status register. Thus, ReverseEndian may be computed as
(SRRE and User mode).

Table 1.1 Symbols Used in Instruction Operation Statements (Continued)

Symbol Meaning

1.3 Special Symbols in Pseudocode Notation

MIPS® Architecture For Programmers Volume III: The MIPS64® and microMIPS64™ Privileged Resource Architecture, Revi-
sion 5.04 18

LLbit Bit of virtual state used to specify operation for instructions that provide atomic read-modify-write. LLbit is
set when a linked load occurs and is tested by the conditional store. It is cleared, during other CPU operation,
when a store to the location would no longer be atomic. In particular, it is cleared by exception return instruc-
tions.

I:,
I+n:,
I-n:

This occurs as a prefix t Operation description lines and functions as a label. It indicates the instruction
time during which the pseudocode appears to “execute.” Unless otherwise indicated, all effects of the current
instruction appear to occur during the instruction time of the current instruction. No label is equivalent to a
time label of I. Sometimes effects of an instruction appear to occur either earlier or later — that is, during the
instruction time of another instruction. When this happens, the instruction operation is written in sections
labeled with the instruction time, relative to the current instruction I, in which the effect of that pseudocode
appears to occur. For example, an instruction may have a result that is not available until after the next
instruction. Such an instruction has the portion of the instruction operation description that writes the result
register in a section labeled I+1.
The effect of pseudocode statements for the current instruction labelled I+1 appears to occur “at the same
time” as the effect of pseudocode statements labeled I for the following instruction. Within one pseudocode
sequence, the effects of the statements take place in order. However, between sequences of statements for
different instructions that occur “at the same time,” there is no define order. Programs must not depend on a
particular order of evaluation between such sections.

PC The Program Counter value. During the instruction time of an instruction, this is the address of the instruc-
tion word. The address of the instruction that occurs during the next instruction time is determined by assign-
ing a value to PC during an instruction time. If no value is assigned to PC during an instruction time by any
pseudocode statement, it is automatically incremented by either 2 (in the case of a 16-bit MIPS16e instruc-
tion) or 4 before the next instruction time. A taken branch assigns the target address to the PC during the
instruction time of the instruction in the branch delay slot.
In the MIPS Architecture, the PC value is only visible indirectly, such as when the processor stores the
restart address into a GPR on a jump-and-link or branch-and-link instruction, or into a Coprocessor 0 register
on an exception. The PC value contains a full 64-bit address all of which are significan during a memory ref-
erence.

ISA Mode In processors that implement the MIPS16e Application Specific Extension or the microMIPS base architec
tures, the ISA Mode is a single-bit register that determines in which mode the processor is executing, as fol-
lows:

In the MIPS Architecture, the ISA Mode value is only visible indirectly, such as when the processor stores a
combined value of the upper bits of PC and the ISA Mode into a GPR on a jump-and-link or branch-and-link
instruction, or into a Coprocessor 0 register on an exception.

PABITS The number of physical address bits implemented is represented by the symbol PABITS. As such, if 36
physical address bits were implemented, the size of the physical address space would be 2PABITS = 236 bytes.

SEGBITS The number of virtual address bits implemented in a segment of the address space is represented by the sym-
bol SEGBITS. As such, if 40 virtual address bits are implemented in a segment, the size of the segment is
2SEGBITS = 240 bytes.

Table 1.1 Symbols Used in Instruction Operation Statements (Continued)

Symbol Meaning

Encoding Meaning

0 The processor is executing 32-bit MIPS instructions
1 The processor is executing MIIPS16e or microMIPS

instructions

 About This Book

19MIPS® Architecture For Programmers Volume III: The MIPS64® and microMIPS64™ Privileged Resource Architecture, Re-
vision 5.04

1.4 For More Information

Various MIPS RISC processor manuals and additional information about MIPS products can be found at the MIPS
URL: http://www mips.com

For comments or questions on the MIPS64® Architecture or this document, send Email to support@mips.com.

FP32RegistersMode Indicates whether the FPU has 32-bit or 64-bit floatin point registers (FPRs). In MIPS32 Release 1, the FPU
has 32 32-bit FPRs in which 64-bit data types are stored in even-odd pairs of FPRs. In MIPS64, (and option-
ally in MIPS32 Release2 and MIPSr3) the FPU has 32 64-bit FPRs in which 64-bit data types are stored in
any FPR.

In MIPS32 Release 1 implementations, FP32RegistersMode is always a 0. MIPS64 implementations have a
compatibility mode in which the processor references the FPRs as if it were a MIPS32 implementation. In
such a case FP32RegisterMode is computed from the FR bit in the Status register. If this bit is a 0, the pro-
cessor operates as if it had 32 32-bit FPRs. If this bit is a 1, the processor operates with 32 64-bit FPRs.
The value of FP32RegistersMode is computed from the FR bit in the Status register.

InstructionInBranchDe-
laySlot

Indicates whether the instruction at the Program Counter address was executed in the delay slot of a branch
or jump. This condition reflects th dynamic state of the instruction, not the static state. That is, the value is
false if a branch or jump occurs to an instruction whose PC immediately follows a branch or jump, but which
is not executed in the delay slot of a branch or jump.

SignalException(excep-
tion, argument)

Causes an exception to be signaled, using the exception parameter as the type of exception and the argument
parameter as an exception-specific a gument). Control does not return from this pseudocode function—the
exception is signaled at the point of the call.

Table 1.1 Symbols Used in Instruction Operation Statements (Continued)

Symbol Meaning

Chapter 2

MIPS® Architecture For Programmers Volume III: The MIPS64® and microMIPS64™ Privileged Resource Architecture, Revi-
sion 5.04 20

The MIPS64 and microMIPS64 Privileged Resource
Architecture

2.1 Introduction

The MIPS64 and microMIPS64 Privileged Resource Architecture (PRA) is a set of environments and capabilities on
which the Instruction Set Architectures operate. The effects of some components of the PRA are user-visible, for
instance, the virtual memory layout. Many other components are visible only to the operating system kernel and to
systems programmers. The PRA provides the mechanisms necessary to manage the resources of the CPU: virtual
memory, caches, exceptions and user contexts. This chapter describes these mechanisms.

2.2 The MIPS Coprocessor Model

The MIPS ISA provides for up to 4 coprocessors. A coprocessor extends the functionality of the MIPS ISA, while
sharing the instruction fetch and execution control logic of the CPU. Some coprocessors, such as the system copro-
cessor and the floating point unit are standard parts of the ISA, and are specified as such in the architecture doc
ments. Coprocessors are generally optional, with one exception: CP0, the system coprocessor, is required. CP0 is the
ISA interface to the Privileged Resource Architecture and provides full control of the processor state and modes.

2.2.1 CP0 - The System Coprocessor

CP0 provides an abstraction of the functions necessary to support an operating system: exception handling, memory
management, scheduling, and control of critical resources. The interface to CP0 is through various instructions
encoded with the COP0 opcode, including the ability to move data to and from the CP0 registers, and specific func
tions that modify CP0 state. The CP0 registers and the interaction with them make up much of the Privileged
Resource Architecture.

2.2.2 CP0 Registers

The CP0 registers provide the interface between the ISA and the PRA. The CP0 registers are described in Chapter 9,
“Coprocessor 0 Registers” on page 122.

 The MIPS64 and microMIPS64 Privileged Resource Architecture

21MIPS® Architecture For Programmers Volume III: The MIPS64® and microMIPS64™ Privileged Resource Architecture, Re-
vision 5.04

Chapter 3

MIPS® Architecture For Programmers Volume III: The MIPS64® and microMIPS64™ Privileged Resource Architecture, Revi-
sion 5.04 22

MIPS64 and microMIPS64 Operating Modes

The MIPS64 and microMIPS64 PRA requires two operating mode: User Mode and Kernel Mode. When operating in
User Mode, the programmer has access to the CPU and FPU registers that are provided by the ISA and to a flat, uni
form virtual memory address space. When operating in Kernel Mode, the system programmer has access to the full
capabilities of the processor, including the ability to change virtual memory mapping, control the system environ-
ment, and context switch between processes.

 In addition, the MIPS PRA supports the implementation of two additional modes: Supervisor Mode and EJTAG
Debug Mode. Refer to the EJTAG specification for a description of De ug Mode.

In Release 2 of the MIPS64 Architecture, support was added for 64-bit coprocessors (and, in particular, 64-bit float
ing point units) with 32-bit CPUs. As such, certain floating point instructions which were pr viously enabled by 64-
bit operations on a MIPS64 processor are now enabled by a new 64-bit floating point operations enabled. Release
(e.g. MIPSr3) introduced the microMIPS instruction set, so all microMIPS processors may implement a 64-bit float
ing point unit.

Finally, the MIPS64 and microMIPS64 PRA provides backward compatible support for 32-bit programs by provid-
ing enables for both 64-bit addressing and 64-bit operations. If access is not enabled, an attempt to reference a 64-bit
address or an instruction that implements a 64-bit operation results in an exception.

3.1 Debug Mode

For processors that implement EJTAG, the processor is operating in Debug Mode if the DM bit in the CP0 Debug
register is a one. If the processor is running in Debug Mode, it has full access to all resources that are available to
Kernel Mode operation.

3.2 Kernel Mode

The processor is operating in Kernel Mode when the DM bit in the Debug register is a zero (if the processor imple-
ments Debug Mode), and any of the following three conditions is true:

• The KSU field in the CP Status register contains 0b00

• The EXL bit in the Status register is one

• The ERL bit in the Status register is one

The processor enters Kernel Mode at power-up, or as the result of an interrupt, exception, or error. The processor
leaves Kernel Mode and enters User Mode or Supervisor Mode when all of the previous three conditions are false,
usually as the result of an ERET instruction.

 MIPS64 and microMIPS64 Operating Modes

23MIPS® Architecture For Programmers Volume III: The MIPS64® and microMIPS64™ Privileged Resource Architecture, Re-
vision 5.04

3.3 Supervisor Mode

The processor is operating in Supervisor Mode (if that optional mode is implemented by the processor) when all of
the following conditions are true:

• The DM bit in the Debug register is a zero (if the processor implements Debug Mode)

• The KSU field in th Status register contains 0b01

• The EXL and ERL bits in the Status register are both zero

3.4 User Mode

The processor is operating in User Mode when all of the following conditions are true:

• The DM bit in the Debug register is a zero (if the processor implements Debug Mode)

• The KSU field in th Status register contains 0b10

• The EXL and ERL bits in the Status register are both zero

3.5 Other Modes

3.5.1 64-bit Address Enable

Access to 64-bit addresses are enabled under any of the following conditions:

• A legal reference to a kernel address space occurs and the KX bit in the Status register is a one

• A legal reference to a supervisor address space occurs and the SX bit in the Status register is a one

• A legal reference to a user address space occurs and the UX bit in the Status register is a one

Note that the operating mode of the processor is not relevant to 64-bit address enables. That is, a reference to user
address space made while the processor is operating in Kernel Mode is controlled by the state of the UX bit, not by the
KX bit.

An attempt to reference a 64-bit address space when 64-bit addresses are not enabled results in an Address Error
Exception (either AdEL or AdES, depending on the type of reference).

When a TLB miss occurs, the choice of the Exception Vector is also determined by the 64-bit address enable1. If 64-
bit addresses are not enabled for the reference, the TLB Refill ector is used. If 64-bit addresses are enabled for the
reference, the XTLB Refill ector is used.

3.5.2 64-bit Operations Enable

Instructions that perform 64-bit operations are legal under any of the following conditions:

1. For ksseg/sseg access while in supervisor mode, please refer to Note 2 of Table 4.2.

3.5 Other Modes

MIPS® Architecture For Programmers Volume III: The MIPS64® and microMIPS64™ Privileged Resource Architecture, Revi-
sion 5.04 24

• The processor is operating in Kernel Mode, Supervisor Mode, or Debug Mode, as described above.

• The PX bit in the Status register is a one

• The processor is operating in User Mode, as described above, and the UX bit in the Status register is a one.

The last two bullets imply that 64-bit operations are legal in User Mode when either the PX bit or the UX bit is a one
in the Status register.

An attempt to execute an instruction which performs 64-bit operations when such instructions are not enabled results
in a Reserved Instruction Exception.

3.5.3 64-bit Floating Point Operations Enable

Instructions that are implemented by a 64-bit floating point unit are l gal under any of the following conditions:

• In an implementation of Release 1 of the Architecture, 64-bit floatin point operations are enabled only if 64-bit
operations enabled.

• In an implementation of Release 2 (and subsequent releases) of the Architecture, 64-bit floatin point operations
are enabled if the F64 bit in the FIR register is a one. The processor must also implement the floating point dat
type. Release 3 (e.g., MIPSr3) introduced the microMIPS instruction set. So on all microMIPS processors, 64-bit
floating point operations are enabled if the F64 bit in th FIR register is a one.

3.5.4 64-bit FPR Enable

Access to 64-bit FPRs is controlled by the FR bit in the Status register. If the FR bit is one, the FPRs are interpreted
as 32 64-bit registers that may contain any data type. If the FR bit is zero, the FPRs are interpreted as 32 32-bit regis-
ters, any of which may contain a 32-bit data type (W, S). In this case, 64-bit data types are contained in even-odd
pairs of registers.

64-bit FPRs are supported in a MIPS64 processor in Release 1 of the Architecture, or in a 64-bit floating point unit
for both MIPS32 and MIPS64 processors, in Release 2 of the Architecture. 64-bit FPRs are supported for all proces-
sors using Architecture releases subsequent to Release 2, including all microMIPS processors. As of Release 5 of the
Architecture, if floating point is implemented the FR=1 is required. I.e. the 64-bit FPU, with the FR=1 64-bit FPU
register model, is required. The FR=0 32-bit FPU register model continues to be required.

The operation of the processor is UNPREDICTABLE under the following conditions:

• The FR bit is a zero, 64-bit operations are enabled, and a floatin point instruction is executed whose datatype is
L or PS.

• The FR bit is a zero and an odd register is referenced by an instruction whose datatype is 64 bits

3.5.5 Coprocessor 0 Enable

Access to Coprocessor 0 registers are enabled under any of the following conditions:

• The processor is running in Kernel Mode or Debug Mode, as defined ab ve

• The CU0 bit in the Status register is one.

 MIPS64 and microMIPS64 Operating Modes

25MIPS® Architecture For Programmers Volume III: The MIPS64® and microMIPS64™ Privileged Resource Architecture, Re-
vision 5.04

3.5.6 ISA Mode

Release 3 of the Architecture (e.g. MIPSr3™) introduced a second branch of the instruction set family, microMIPS64.
Devices can implement both ISA branches (MIPS64 and microMIPS64) or only one branch.

The ISA Mode bit is used to denote which ISA branch to use when decoding instructions. This bit is normally not vis-
ible to software. It’s value is saved to any GPR that would be used as a jump target address, such as GPR31 when
written by a JAL instruction or the source register for a JR instruction.

For processors that implement the MIPS64 ISA, the ISA Mode bit value of zero selects MIPS64. For processors that
implement the microMIPS64 ISA, the ISA Mode bit value of one selects microMIPS64. For processors that imple-
ment the MIPS16e™ ASE, the ISA Mode bit value of one selects MIPS16e. A processor is not allowed to implement
both MIPS16e and microMIPS.

Please read Volume II-B: Introduction to the microMIPS64 Instruction Set, Section 5.3, “ISA Mode Switch” for a
more in-depth description of ISA mode switching between the ISA branches and the ISA Mode bit.

Chapter 4

MIPS® Architecture For Programmers Volume III: The MIPS64® and microMIPS64™ Privileged Resource Architecture, Revi-
sion 5.04 26

Virtual Memory

4.1 Differences between Releases of the Architecture

4.1.1 Virtual Memory

In Release 1 of the Architecture, the minimum page size was 4KB, with optional support for pages as large as
256MB. In Release 2 of the Architecture (and subsequent releases), optional support for 1KB pages was added for
use in specifi embedded applications that require access to pages smaller than 4KB. Such usage is expected to be in
conjunction with a default page size of 4KB and is not intended or suggested to replace the default 4KB page size but,
rather, to augment it.

Support for 1KB pages involves the following changes:

• Addition of the PageGrain register. This register is also used by the SmartMIPS™ ASE specification, ut bits
used by Release 2 of the Architecture and the SmartMIPS ASE specification do not verlap.

• Modification of th EntryHi register to enable writes to, and use of, bits 12..11 (VPN2X).

• Modification of th PageMask register to enable writes to, and use of, bits 12..11 (MaskX).

• Modification of th EntryLo0 and EntryLo1 registers to shift the Config3SP field to the left by 2 bits, when 1K
page support is enabled, to create space for two lower-order physical address bits.

Support for 1KB pages is denoted by the Config3SP bit and enabled by the PageGrainESP bit.

4.1.2 Physical Memory

In Release 1 of the Architecture, the physical address size was limited by the format of the EntryLo0 and EntryLo1
registers to 36 bits. Some applications of MIPS processors already require more than 36 bits of physical address (for
example, high-end networking), and others are expected to appear during the lifetime of Release 2 of the architecture.
As such, Release 2 added an optional extension to the architecture to provide up to 59 bits of physical address for
MIPS64 processors. This extension is optional because several operating systems currently use the reserved bits to
the left of the PFN field in th EntryLo0 and EntryLo1 registers for PTE software flags. The flags are loaded direct
into these registers on a TLB Refil exception. As such, for compatibility with existing software, the extension of the
PFN field must be done with an xplicit enable.

Support for extended PFNs is denoted by the Config3LPA bit and enabled by the PageGrainELPA bit.

4.1.3 Protection of Virtual Memory Pages

In Release 3 of the Architecture, e.g. MIPSr3, two optional control bits are added to each TLB entry. These bits, RI
(Read Inhibit) and XI (Execute Inhibit), allows more types of protection to be used for virtual pages - including write-
only pages, non-executable pages.

 Virtual Memory

27MIPS® Architecture For Programmers Volume III: The MIPS64® and microMIPS64™ Privileged Resource Architecture, Re-
vision 5.04

This feature originated in the SmartMIPS ASE but has been modified from the original SmartMIPS definition. or
the Release 3 version of this feature, each of the RI and XI bits can be separately implemented. For the Release 3 ver-
sion of this feature, new exception codes are used when a TLB access does not obey the RI/XI bits.

4.1.4 Context Register

In Release 3 of the Architecture, e.g. MIPSr3, the Context/XContext registers are a read/write registers containing a
address pointer that can point to an arbitrary power-of-two aligned data structure in memory, such as an entry in the
page table entry (PTE) array. In Releases 1 & 2, this pointer was defined to reference a f ed-sized 16-byte structure
in memory within a linear array containing an entry for each even/odd virtual page pair. The Release 3 version of the
Context/XContext registers can be used far more generally.

This feature originated in the SmartMIPS ASE. This feature is optional in the Release 3 version of the base architec-
ture.

4.1.5 Segmentation Control

In Release 3 of the Architecture, e.g. MIPSr3, an optional programmable segmentation feature has been added. This
improves the fl xibility of the MIPS virtual address space.

With Segmentation Control, address translation begins by matching a virtual address to the region specified in a S g-
ment Configuration. The virtual address space is therefore definable as the set of memory gions specified by S g-
ment Configurations. The beh vior and attributes of each region are also specified by S gment Configurations. Si
Segment Configurations are defined, fully mapping the 32-bit Compatibility virtual address spac

4.1.6 Enhanced Virtual Addressing

In Release 3 of the Architecture, e.g., MIPSr3, an optional Enhanced Virtual Addressing (EVA) feature has been
added. EVA is a configuration of S gmentation Control and a set of kernel mode load/store instructions allowing
direct access to user-mode memory space from kernel mode. In EVA, Segmentation Control is programmed to defin
two address ranges, a 3 GB range with mapped-user, mapped-supervisor, and unmapped-kernel access modes and a 1
GB address range with mapped-kernel access mode.

4.2 Terminology

4.2.1 Address Space

An Address Space is the range of all possible addresses that can be generated for a particular addressing mode. There
is one 64-bit Address Space and one 32-bit Compatibility Address Space that is mapped into a subset of the 64-bit
Address Space.

4.2.2 Segment and Segment Size (SEGBITS)

A Segment is a defined subset of an Address Space that has self-consistent reference and access beh vior. A 32-bit
Compatibility Segment is part of the 32-bit Compatibility Address Space and is either 229 or 231 bytes in size,
depending on the specific S gment. A 64-bit Segment is part of the 64-bit Address Space and is no larger than 262

bytes in size, but may be smaller on an implementation-dependent basis. The symbol SEGBITS is used to represent
the actual number of bits implemented in each 64-bit Segment. As such, if 40 virtual address bits were implemented,
the actual size of the Segment would be 2SEGBITS = 240 bytes. Software may determine the value of SEGBITS by

4.3 Virtual Address Spaces

MIPS® Architecture For Programmers Volume III: The MIPS64® and microMIPS64™ Privileged Resource Architecture, Revi-
sion 5.04 28

writing all ones to the EntryHi register and reading the value back. Bits read as “1” from the VPN2 field all w soft-
ware to determine the boundary between the VPN2 and Fill fields to calculate the alue of SEGBITS.

4.2.3 Physical Address Size (PABITS)

The number of physical address bits implemented is represented by the symbol PABITS. As such, if 36 physical
address bits were implemented, the size of the physical address space would be 2PABITS = 236 bytes. The format of the
EntryLo0 and EntryLo1 registers implicitly limits the physical address size to 236 bytes. Software may determine the
value of PABITS by writing all ones to the EntryLo0 or EntryLo1 registers and reading the value back. Bits read as
“1” from the PFN field all w software to determine the boundary between the PFN and Fill fields to calculate th
value of PABITS.

4.3 Virtual Address Spaces

With support for 64-bit operations and address calculation, the MIPS64/microMIPS64 architecture implicitly define
and provides support for a 64-bit virtual Address Space, sub-divided into four Segments selected by bits 63..62 of the
virtual address. To provide compatibility for 32-bit programs and MIPS32/microMIPS32 processors, a 232-byte Com-
patibility Address Space is defined separated into two non-contiguous ranges in which the upper 32 bits of the 64-bit
address are the sign extension of bit 31. The Compatibility Address Space is similarly sub-divided into Segments
selected by bits 31..29 of the virtual address. Figure 4.1 shows the layout of the Address Spaces, including the Com-
patibility Address Space and the segmentation of each Address Space.

4.3 Virtual Address Spaces

MIPS® Architecture For Programmers Volume III: The MIPS64® and microMIPS64™ Privileged Resource Architecture, Revi-
sion 5.04 30

Table 4.1 lists the same information in tabular form.

Each Segment of an Address Space is associated with one of the three processor operating modes (User, Supervisor,
or Kernel). A Segment that is associated with a particular mode is accessible if the processor is running in that or a
more privileged mode. For example, a Segment associated with User Mode is accessible when the processor is run-
ning in User, Supervisor, or Kernel Modes. A Segment is not accessible if the processor is running in a less privileged
mode than that associated with the Segment. For example, a Segment associated with Supervisor Mode is not acces-
sible when the processor is running in User Mode and such a reference results in an Address Error Exception. The
“Reference Legal from Mode(s)” column in Table 4-2 lists the modes from which each Segment may be legally refer-
enced.

If a Segment has more than one name, each name denotes the mode from which the Segment is referenced. For exam-
ple, the Segment name “useg” denotes a reference from user mode, while the Segment name “kuseg” denotes a refer-
ence to the same Segment from kernel mode.

Table 4.1 Virtual Memory Address Spaces

VA63..62

Segment
Name(s) Maximum Address Range

Associated
with Mode

Reference
Legal from

Mode(s)
Actual

Segment Size

64-bit
Address
Enable

Segment
Type

0b11 kseg3 0xFFFF FFFF FFFF FFFF
through

0xFFFF FFFF E000 0000

Kernel Kernel 229 bytes Always 32-bit Compat-
ibility

sseg
ksseg

0xFFFF FFFF DFFF FFFF
through

0xFFFF FFFF C000 0000

Supervisor Supervisor
Kernel

229 bytes Always 32-bit Compat-
ibility

kseg1 0xFFFF FFFF BFFF FFFF
through

0xFFFF FFFF A000 0000

Kernel Kernel 229 bytes Always 32-bit Compat-
ibility

kseg0 0xFFFF FFFF 9FFF FFFF
through

0xFFFF FFFF 8000 0000

Kernel Kernel 229 bytes Always 32-bit Compat-
ibility

xkseg 0xFFFF FFFF 7FFF FFFF
through

0xC000 0000 0000 0000

Kernel Kernel (2SEGBITS - 231)
bytes1

KX 64-bit

0b10 xkphys 0xBFFF FFFF FFFF FFFF
through

0x8000 0000 0000 0000

Kernel Kernel 8 2PABITS

byte1 regions
within the 262

byte Segment

KX 64-bit

0b01 xsseg
xksseg

0x7FFF FFFF FFFF FFFF
through

0x4000 0000 0000 0000

Supervisor Supervisor
Kernel

2SEGBITS bytes1 SX 64-bit

0b00 xuseg
xsuseg
xkuseg

0x3FFF FFFF FFFF FFFF
through

0x0000 0000 8000 0000

User User
Supervisor

Kernel

(2SEGBITS -231)
bytes1

1. See 4.2.2 “Segment and Segment Size (SEGBITS)” and 4.2.3 “Physical Address Size (PABITS)” for an explanation of the symbols
SEGBITS and PABITS, respectively

UX 64-bit

useg
suseg
kuseg

0x0000 0000 7FFF FFFF
through

0x0000 0000 0000 0000

User User
Supervisor

Kernel

231 bytes Always 32-bit Compat-
ibility

 Virtual Memory

31MIPS® Architecture For Programmers Volume III: The MIPS64® and microMIPS64™ Privileged Resource Architecture, Re-
vision 5.04

References to 64-bit Segments (as shown in the “Segment Type” column of Table 4.1) are enabled only if the appro-
priate 64-bit Address Enable is on (see Section 3.5.1 on page 23, and the “64-bit Enable” column of Table 4.1). Ref-
erences to 32-bit Compatibility Segments are always enabled.

4.4 Compliance

A MIPS64/microMIPS64 compliant processor must implement the following 32-bit Compatibility Segments:

• useg/kuseg

• kseg0

• kseg1

In addition, a MIPS64/microMIPS64 compliant processor using the TLB-based address translation mechanism must
also implement the kseg3 32-bit Compatibility Segment.

4.5 Access Control as a Function of Address and Operating Mode

Table 4.2 enumerates the action taken by the processor for each section of the 64-bit Address Space as a function of
the operating mode of the processor. The selection of TLB Refil vector and other special-cased behavior is also listed
for each reference.

Table 4.2 Address Space Access and TLB Refill Selection as a Function of Operating Mode

Virtual Address Range

Segment
Name(s)

Action when Referenced from Operating
Mode

Symbolic

Assuming
SEGBITS = 40,
PABITS = 36 User Mode1

Supervisor
Mode Kernel Mode

0xFFFF FFFF FFFF FFFF

through

0xFFFF FFFF E000 0000

0xFFFF FFFF FFFF FFFF

through

0xFFFF FFFF E000 0000

kseg3 Address Error Address Error Mapped

Refill ector:
TLB (KX=0)
XTLB(KX=1)
See Section 4.9

for special
behavior when
DebugDM = 1

0xFFFF FFFF DFFF FFFF

through

0xFFFF FFFF C000 0000

0xFFFF FFFF DFFF FFFF

through

0xFFFF FFFF C000 0000

sseg
ksseg

Address Error Mapped

Refil Vector2:
TLB (KX=0)
XTLB(KX=1)

Mapped

Refill ector2:
TLB (KX=0)
XTLB(KX=1)

0xFFFF FFFF BFFF FFFF

through

0xFFFF FFFF A000 0000

0xFFFF FFFF BFFF FFFF

through

0xFFFF FFFF A000 0000

kseg1 Address Error Address Error Unmapped,
Uncached

See Section 4.6

4.5 Access Control as a Function of Address and Operating Mode

MIPS® Architecture For Programmers Volume III: The MIPS64® and microMIPS64™ Privileged Resource Architecture, Revi-
sion 5.04 32

0xFFFF FFFF 9FFF FFFF

through

0xFFFF FFFF 8000 0000

0xFFFF FFFF 9FFF FFFF

through

0xFFFF FFFF 8000 0000

kseg0 Address Error Address Error Unmapped

See Section 4.6

0xFFFF FFFF 7FFF FFFF

through

0xC000 0000 0000 0000

 + 2SEGBITS- 231

0xFFFF FFFF 7FFF FFFF

through

0xC000 00FF 8000 0000

Address Error Address Error Address Error

0xC000 0000 0000 0000 +
2SEGBITS - 231 - 1

through

0xC000 0000 0000 0000

0xC000 00FF 7FFF FFFF

through

0xC000 0000 0000 0000

xkseg Address Error Address Error Address Error
if KX = 0
Mapped if

KX = 1
Refill ector:

XTLB

0xBFFF FFFF FFFF FFFF

through

0x8000 0000 0000 0000

0xBFFF FFFF FFFF FFFF

through

0x8000 0000 0000 0000

xkphys Address Error Address Error Address Error
if KX = 0 or in
certain address
ranges within
the Segment
Unmapped

See Section 4.7

0x7FFF FFFF FFFF FFFF

through

0x4000 0000 0000 0000 +
2SEGBITS

0x7FFF FFFF FFFF FFFF

through

0x4000 0100 0000 0000

Address Error Address Error Address Error

0x4000 0000 0000 0000 +
2SEGBITS - 1

through

0x4000 0000 0000 0000

0x4000 00FF FFFF FFFF

through

0x4000 0000 0000 0000

xsseg
xksseg

Address Error Address Error
if SX = 0

Mapped if
SX = 1

Refill ector:
XTLB

Address Error
if SX = 0
Mapped if

SX = 1
Refill ector:

XTLB

0x3FFF FFFF FFFF FFFF

through

0x0000 0000 0000 0000 +
2SEGBITS

0x3FFF FFFF FFFF FFFF

through

0x0000 0100 0000 0000

Address Error Address Error Address Error

Table 4.2 Address Space Access and TLB Refill Selection as a Function of Operating Mode

Virtual Address Range

Segment
Name(s)

Action when Referenced from Operating
Mode

Symbolic

Assuming
SEGBITS = 40,
PABITS = 36 User Mode1

Supervisor
Mode Kernel Mode

 Virtual Memory

33MIPS® Architecture For Programmers Volume III: The MIPS64® and microMIPS64™ Privileged Resource Architecture, Re-
vision 5.04

4.6 Address Translation and Cacheability & Coherency Attributes for the
kseg0 and kseg1 Segments

The kseg0 and kseg1 Unmapped Segments provide a window into the least significan 229 bytes of physical memory,
and, as such, are not translated using the TLB or other address translation unit. The cacheability and coherency
attribute of the kseg0 Segment is supplied by the K0 fiel of the CP0 Config register. The cacheability and coherency
attribute for the kseg1 Segment is always Uncached. Table 4.3 describes how this transformation is done, and the
source of the cacheability and coherency attributes for each Segment.

0x0000 0000 0000 0000 +
2SEGBITS - 1

through

0x0000 0000 8000 0000

0x0000 00FF FFFF FFFF

through

0x0000 0000 8000 0000

xuseg
xsuseg
xkuseg

Address Error
if UX = 0

Mapped if
UX = 1

Refill ector:
XTLB

Address Error
if UX = 0

Mapped if
UX = 1

Refill ector:
XTLB

Address Error
if UX = 0
Mapped if

UX = 1
Refill ector:

XTLB
See Section 4.8
for implemen-
tation depen-
dent behavior

when
StatusERL=1

0x0000 0000 7FFF FFFF

through

0x0000 0000 0000 0000

0x0000 0000 7FFF FFFF

through

0x0000 0000 0000 0000

useg
suseg
kuseg

Mapped
Refill ector:
TLB (UX=0)
XTLB(UX=1)

Mapped
Refill ector:
TLB (UX=0)
XTLB(UX=1)

Unmapped if
StatusERL=1

See Section 4.8

Mapped if
StatusERL=0
Refill ector:
TLB (UX=0)
XTLB(UX=1)

1. See Section 4.10 for the special treatment of the address for data references when the processor is running in User Mode and the
UX bit is zero.

2. Note that the Refill ector for references to sseg/ksseg is determined by the state of the KX bit, not the SX bit.

Table 4.3 Address Translation and Cacheability and Coherency Attributes for the kseg0 and kseg1
Segments

Segment Name Virtual Address Range
Generates Physical

Address Cache Attribute

kseg1 0xFFFF FFFF BFFF FFFF

through

0xFFFF FFFF A000 0000

0x0000 0000 1FFF FFFF

through

0x0000 0000 0000 0000

Uncached

Table 4.2 Address Space Access and TLB Refill Selection as a Function of Operating Mode

Virtual Address Range

Segment
Name(s)

Action when Referenced from Operating
Mode

Symbolic

Assuming
SEGBITS = 40,
PABITS = 36 User Mode1

Supervisor
Mode Kernel Mode

4.7 Address Translation and Cacheability and Coherency Attributes for the xkphys Segment

MIPS® Architecture For Programmers Volume III: The MIPS64® and microMIPS64™ Privileged Resource Architecture, Revi-
sion 5.04 34

4.7 Address Translation and Cacheability and Coherency Attributes for the
xkphys Segment

The xkphys Unmapped Segment is actually composed of 8 address ranges, each of which provides a window into the
entire 2PABITS bytes of physical memory and, as such, is not translated using the TLB or other address translation
unit. For this Segment, the cacheability and coherency attribute is taken from VA61..59 and has the same encoding as
that shown in Table 9.2. An Address Error Exception occurs if VA58..PABITS are non-zero. If no Address Error Excep-
tion occurs, the physical address is taken from the VAPABITS-1..0 virtual address field Table 4.4 shows the interpreta-
tion of the various fields of the virtual address when referencing the xkphys S gment.

Figure 4.2 Address Interpretation for the xkphys Segment

kseg0 0xFFFF FFFF 9FFF FFFF

through

0xFFFF FFFF 8000 0000

0x0000 0000 1FFF FFFF

through

0x0000 0000 0000 0000

From K0 fiel of Config
Register

63 62 61 59 58 PABITS PABITS-1 0

10 CCA Address Error if Non-Zero Physical Address

Table 4.4 Address Translation and Cacheability Attributes for the xkphys Segment

Virtual Address Range

Generates Physical
Address Cache AttributeSymbolic

Assuming
PABITS = 36

0xBFFF FFFF FFFF FFFF

through

0xB800 0000 0000 0000

+ 2PABITS

0xBFFF FFFF FFFF FFFF

through

0xB800 0010 0000 0000

Address Error N/A

0xB800 0000 0000 0000 +
2PABITS - 1

through

0xB800 0000 0000 0000

0xB800 000F FFFF FFFF

through

0xB800 0000 0000 0000

0x0000 0000 0000 0000 +
2PABITS - 1

through

0x0000 0000 0000 0000

Uses encoding 7 of
Table 9.2

Table 4.3 Address Translation and Cacheability and Coherency Attributes for the kseg0 and kseg1
Segments

Segment Name Virtual Address Range
Generates Physical

Address Cache Attribute

 Virtual Memory

35MIPS® Architecture For Programmers Volume III: The MIPS64® and microMIPS64™ Privileged Resource Architecture, Re-
vision 5.04

0xB7FF FFFF FFFF FFFF

through

0xB000 0000 0000 0000 +
2PABITS

0xB7FF FFFF FFFF FFFF

through

0xB000 0010 0000 0000

Address Error N/A

0xB000 0000 0000 0000 +
2PABITS - 1

through

0xB000 0000 0000 0000

0xB000 000F FFFF FFFF

through

0xB000 0000 0000 0000

0x0000 0000 0000 0000 +
2PABITS - 1

through

0x0000 0000 0000 0000

Uses encoding 6 of
Table 9.2

0xAFFF FFFF FFFF FFFF

through

0xA800 0000 0000 0000 +
2PABITS

0xAFFF FFFF FFFF FFFF

through

0xA800 0010 0000 0000

Address Error N/A

0xA800 0000 0000 0000 +
2PABITS - 1

through

0xA800 0000 0000 0000

0xA800 000F FFFF FFFF

through

0xA800 0000 0000 0000

0x0000 0000 0000 0000

+ 2PABITS - 1

through

0x0000 0000 0000 0000

Uses encoding 5 of
Table 9.2

0xA7FF FFFF FFFF FFFF

through

0xA000 0000 0000 0000 +
2PABITS

0xA7FF FFFF FFFF FFFF

through

0xA000 0010 0000 0000

Address Error N/A

0xA000 0000 0000 0000 +
2PABITS - 1

through

0xA000 0000 0000 0000

0xA000 000F FFFF FFFF

through

0xA000 0000 0000 0000

0x0000 0000 0000 0000 +
2PABITS - 1

through

0x0000 0000 0000 0000

Uses encoding 4 of
Table 9.2

0x9FFF FFFF FFFF FFFF

through

0x9800 0000 0000 0000 +
2PABITS

0x9FFF FFFF FFFF FFFF

through

0x9800 0010 0000 0000

Address Error N/A

Table 4.4 Address Translation and Cacheability Attributes for the xkphys Segment

Virtual Address Range

Generates Physical
Address Cache AttributeSymbolic

Assuming
PABITS = 36

4.7 Address Translation and Cacheability and Coherency Attributes for the xkphys Segment

MIPS® Architecture For Programmers Volume III: The MIPS64® and microMIPS64™ Privileged Resource Architecture, Revi-
sion 5.04 36

0x9800 0000 0000 0000

+ 2PABITS - 1

through

0x9800 0000 0000 0000

0x9800 000F FFFF FFFF

through

0x9800 0000 0000 0000

0x0000 0000 0000 0000 +
2PABITS - 1

through

0x0000 0000 0000 0000

Cacheable (see encoding
3 of Table 9.2)

0x97FF FFFF FFFF FFFF

through

0x9000 0000 0000 0000 +
2PABITS

0x97FF FFFF FFFF FFFF

through

0x9000 0010 0000 0000

Address Error N/A

0x9000 0000 0000 0000 +
2PABITS - 1

through

0x9000 0000 0000 0000

0x9000 000F FFFF FFFF

through

0x9000 0000 0000 0000

0x0000 0000 0000 0000 +
2PABITS - 1

through

0x0000 0000 0000 0000

Uncached (see encoding
2 of Table 9.2)

0x8FFF FFFF FFFF FFFF

through

0x8800 0000 0000 0000 +
2PABITS

0x8FFF FFFF FFFF FFFF

through

0x8800 0010 0000 0000

Address Error N/A

0x8800 0000 0000 0000 +
2PABITS - 1

through

0x8800 0000 0000 0000

0x8800 000F FFFF FFFF

through

0x8800 0000 0000 0000

0x0000 0000 0000 0000 +
2PABITS - 1

through

0x0000 0000 0000 0000

Uses encoding 1 of
Table 9.2

0x87FF FFFF FFFF FFFF

through

0x8000 0000 0000 0000 +
2PABITS

0x87FF FFFF FFFF FFFF

through

0x8000 0010 0000 0000

Address Error N/A

0x8000 0000 0000 0000

+ 2PABITS - 1

through

0x8000 0000 0000 0000

0x8000 000F FFFF FFFF

through

0x8000 0000 0000 0000

0x0000 0000 0000 0000 +
2PABITS - 1

through

0x0000 0000 0000 0000

Uses encoding 0 of
Table 9.2

Table 4.4 Address Translation and Cacheability Attributes for the xkphys Segment

Virtual Address Range

Generates Physical
Address Cache AttributeSymbolic

Assuming
PABITS = 36

 Virtual Memory

37MIPS® Architecture For Programmers Volume III: The MIPS64® and microMIPS64™ Privileged Resource Architecture, Re-
vision 5.04

4.8 Address Translation for the kuseg Segment when StatusERL = 1

To provide support for the cache error handler, the kuseg Segment becomes an unmapped, uncached Segment, simi-
lar to the kseg1 Segment, if the ERL bit is set in the Status register. This allows the cache error exception code to
operate uncached using GPR R0 as a base register to save other GPRs before use.

4.9 Special Behavior for the kseg3 Segment when DebugDM = 1

If EJTAG is implemented on the processor, the EJTAG block must treat the virtual address range
0xFFFF FFFF FF20 0000 through 0xFFFF FFFF FF3F FFFF, inclusive, as a special memory-mapped
region in Debug Mode. A MIPS64/microMIPS64 compliant implementation that also implements EJTAG must:

• explicitly range check the address range as given and not assume that the entire region between 0xFFFF FFFF
FF20 0000 and 0xFFFF FFFF FFFF FFFF is included in the special memory-mapped region.

• not enable the special EJTAG mapping for this region in any mode other than in EJTAG Debug mode.

Even in Debug mode, normal memory rules may apply in some cases. Refer to the EJTAG specificatio for details on
this mapping.

4.10 Special Behavior for Data References in User Mode with StatusUX = 0

When the processor is running in User Mode, legal addresses have VA31 equal zero, and the 32-bit virtual address is
sign-extended (really zero-extended because VA31 is zero) into a full 64-bit address. As such, one would expect that
the normal address bounds checks on the sign-extended 64-bit address would be sufficient. Unfortunatel , there are
cases in which a program running on a 32-bit processor can generate a data address that is legal in 32 bits, but which
is not appropriately sign-extended into 64-bits. For example, consider the following code example:

la r10, 0x80000000
lw r10, -4(r10)

The results of executing this address calculation on 32-bit and 64-bit processors with UX equal zero is shown below:

On a 32-bit processor, the result of this address calculation results in a valid, useg address. On a 64-bit processor,
however, the sign-extended address in the base register is added to the sign-extended displacement as a 64-bit quan-
tity which results in a carry-out of bit 31, producing an address that is not properly sign extended.

To provide backward compatibility with 32-bit User Mode code, MIPS64 compliant processors must implement the
following special case for data references (and explicitly not for instruction references) when the processor is running
in User Mode and the UX bit is zero in the Status register:

The effective address calculated by a load, store, or prefetch instruction must be sign extended from bit 31 into bits
63..32 of the full 64-bit address, ignoring the previous contents of bits 63..32 of the address, before the final addres

32-bit Processor 64-bit Processor

0x8000 0000 0xFFFF FFFF 8000 0000

+0xFFFF FFFC +0xFFFF FFFF FFFF FFFC

0x7FFF FFFC 0xFFFF FFFF 7FFF FFFC

4.11 TLB-Based Virtual Address Translation

MIPS® Architecture For Programmers Volume III: The MIPS64® and microMIPS64™ Privileged Resource Architecture, Revi-
sion 5.04 38

is checked for address error exceptions or used to access the TLB or cache. This special-case behavior is not per-
formed for instruction references.

This results in a properly zero-extended address for all legal data addresses (which cleans up the address shown in the
example above), and results in a properly sign-extended address for all illegal data addresses (those in which bit 31 is
a one). Code running in Debug Mode, Kernel Mode, or Supervisor Mode with the appropriate 64-bit address enable
off is prohibited from generating an effective address in which there is a carry-out of bit 31. If such an address is pro-
duced, the operation of the instruction generating such an address is UNPREDICTABLE.

4.11 TLB-Based Virtual Address Translation1

This section describes the TLB-based virtual address translation mechanism. Note that sufficien TLB entries must be
implemented to avoid a TLB exception loop on load and store instructions.

4.11.1 Address Space Identifiers (ASID)

The TLB-based translation mechanism supports Address Space Identifiers to uniquely identify the same virtua
address across different processes. The operating system assigns ASIDs to each process and the TLB keeps track of
the ASID when doing address translation. In certain circumstances, the operating system may wish to associate the
same virtual address with all processes. To address this need, the TLB includes a global (G) bit which over-rides the
ASID comparison during translation.

4.11.2 TLB Organization

The TLB is a fully-associative structure which is used to translate virtual addresses. Each entry contains two logical
components: a comparison section and a physical translation section. The comparison section includes the mapping
region specifie (R) and the virtual page number (VPN2 and, in Release 2 and subsequent releases, VPNX) (actually,
the virtual page number/2 since each entry maps two physical pages) of the entry, the ASID, the G(lobal) bit and a
recommended mask field which pr vides the ability to map different page sizes with a single entry. The physical
translation section contains a pair of entries, each of which contains the physical page frame number (PFN, and in
Release 2 and subsequent releases, PFNX), a valid (V) bit, a dirty (D) bit, optionally read-inhibit and execute-inhibit
(RI & XI) bits and a cache coherency fiel (C), whose valid encodings are given in Table 9.2. There are two entries in
the translation section for each TLB entry because each TLB entry maps an aligned pair of virtual pages and the pair
of physical translation entries corresponds to the even and odd pages of the pair.

In Revision 3 of the architecture, the RI and XI bits were added to the TLB to enable more secure access of memory
pages. These bits (along with the Dirty bit) allow the implementation of read-only, write-only, no-execute access pol-
icies for mapped pages.

Figure 4.3 shows the logical arrangement of a TLB entry, including the optional support added in Release 2 of the
Architecture for 1KB page sizes and the increase in physical address size from the 36-bit limit in Release 1. Light
grey fields denote xtensions to the right that are required to support 1KB page sizes. Medium grey fields denot
extensions to the left that are required to support larger physical addresses. Neither set of extensions is present in an
implementation of Release 1 of the Architecture.

1. Refer to A.1 “Fixed Mapping MMU” on page 286 and A.2 “Block Address Translation” on page 290 for descriptions of
alternative MMU organizations

 Virtual Memory

39MIPS® Architecture For Programmers Volume III: The MIPS64® and microMIPS64™ Privileged Resource Architecture, Re-
vision 5.04

Figure 4.3 Contents of a TLB Entry

The fields of the TLB entry correspond xactly to the fields in the CP PageMask, EntryHi, EntryLo0 and EntryLo1
registers. The even page entries in the TLB (e.g., PFN0) come from EntryLo0. Similarly, odd page entries come from
EntryLo1.

4.11.3 TLB Initialization

In many processor implementations, software must initialize the TLB during the power-up process. In processors that
detect multiple TLB matches and signal this via a machine check assumption, software must be prepared to handle
such an exception or use a TLB initialization algorithm that minimizes or eliminates the possibility of the exception.

In Release 1 of the Architecture, processor implementations could detect and report multiple TLB matches either on a
TLB write (TLBWI or TLBWR instructions) or a TLB read (TLB access or TLBR or TLBP instructions). In Release
2 of the Architecture (and subsequent releases), processor implentations are limited to reporting multiple TLB
matches only on TLB write, and this is also true of most implementations of Release 1 of the Architecture.

The following code example shows a TLB initialization routine which, on implementations of Release 2 of the Archi-
tecture (and subsequent releases), eliminates the possibility of reporting a machine check during TLB initialization.
This example has equivalent effect on implementations of Release 1 of the Architecture which report multiple TLB
exceptions only on a TLB write, and minimizes the probability of such an exception occuring on other implementa-
tions. The following example is for processors which do not implement TLB invalidate instructions, i.e.
Config4IE=0x0

/*
* InitTLB
*
* Initialize the TLB to a power-up state, guaranteeing that all entries
* are unique and invalid.
*
* Arguments:
* a0 = Maximum TLB index (from MMUSize field of C0_Config1)
*
* Returns:

PFNX

G ASIDVPN2

Mask

PFN1 D1 V1RI1 XI1C1

Maskx

VPN2X

PFN0 D0 V0RI0 XI0C0

Fields marked with this color are optional Release 2 features required to support 1KB pages

Fields marked with this color are optional Release 3 features added for additional security.

PFNX

R

Fields marked with this color are optional Release 2 features required to support larger physical addresses

4.11 TLB-Based Virtual Address Translation

MIPS® Architecture For Programmers Volume III: The MIPS64® and microMIPS64™ Privileged Resource Architecture, Revi-
sion 5.04 40

* No value
*
* Restrictions:
* This routine must be called in unmapped space
*
* Algorithm:
* va = kseg0_base;
* for (entry = max_TLB_index; entry >= 0, entry--) {
* while (TLB_Probe_Hit(va)) {
* va += Page_Size;
* }
* TLB_Write(entry, va, 0, 0, 0);
* }
*
* Notes:
* - The Hazard macros used in the code below expand to the appropriate
* number of SSNOPs in an implementation of Release 1 of the
* Architecture, and to an ehb in an implementation of Release 2 of
* the Architecture. See , “CP0 Hazards,” on page 116 for
* more additional information.
*/

InitTLB:
/*
* Clear PageMask, EntryLo0 and EntryLo1 so that valid bits are off, PFN values
* are zero, and the default page size is used.
*/

dmtc0 zero, C0_EntryLo0 /* Clear out PFN and valid bits */
dmtc0 zero, C0_EntryLo1
mtc0 zero, C0_PageMask /* Clear out mask register *

/* Start with the base address of kseg0 for the VA part of the TLB */
la t0, A_K0BASE /* A_K0BASE == 0xFFFF.FFFF.8000.0000 */

/*
* Write the VA candidate to EntryHi and probe the TLB to see if if is
* already there. If it is, a write to the TLB may cause a machine
* check, so just increment the VA candidate by one page and try again.
*/

10:
dmtc0 t0, C0_EntryHi /* Write VA candidate */
TLBP_Write_Hazard() /* Clear EntryHi hazard (ssnop/ehb in R1/2) */
tlbp /* Probe the TLB to check for a match */
TLBP_Read_Hazard() /* Clear Index hazard (ssnop/ehb in R1/2) */
mfc0 t1, C0_Index /* Read back flag to check for match */
bgez t1, 10b /* Branch if about to duplicate an entry */
daddiu t0, (1<<S_EntryHiVPN2) /* Add 1 to VPN index in va */

/*
* A write of the VPN candidate will be unique, so write this entry
* into the next index, decrement the index, and continue until the
* index goes negative (thereby writing all TLB entries)
*/

mtc0 a0, C0_Index /* Use this as next TLB index */
TLBW_Write_Hazard() /* Clear Index hazard (ssnop/ehb in R1/2) */
tlbwi /* Write the TLB entry */
bne a0, zero, 10b /* Branch if more TLB entries to do */
addiu a0, -1 /* Decrement the TLB index

 Virtual Memory

41MIPS® Architecture For Programmers Volume III: The MIPS64® and microMIPS64™ Privileged Resource Architecture, Re-
vision 5.04

/*
* Clear Index and EntryHi simply to leave the state constant for all
* returns
*/

mtc0 zero, C0_Index
dmtc0 zero, C0_EntryHi
jr ra /* Return to caller */
nop

In the code above, 64-bit operations are shown for operations with the TLB. For MIPS64 processors which are run-
ning 32-bit software, these instructions may be changed to the corresponding 32-bit instructions.

The V(alid) bit within the TLB entry represents whether the Page Table Entry held in the TLB entry is valid or not.
ThisValid bit does not represent whether the TLB entry has been initialized or not.

The above initialization routine relies on using unmapped addresses to be written to the VPN2 fiel of the TLB entry
to create entries which will never match on mapped addresses. When Segmentation Control is implemented
(Config3SC=1), the virtual address map may be programmed to not have any unmapped address regions. For this rea-
son, the above routine cannot be used when Segmentation Control is implemented. Instead, the TLB invalidate fea-
ture must be used. The TLB invalidate feature is discussed in the next paragraph.

Release 3 introduces another optional valid bit which denotes whether the virtual address (the VPN2 field) of th
TLB entry has been initialized or not. If the VPN2 fiel is marked as invalid, the entry is ignored on address match for
memory accesses. This additional valid bit is visible through the EHINV field of th EntryHi register. If this bit is
implemented (indicated by Config4IE), then there are 3 ways to initialize a TLB entry: the TLBINV, TLBINVF and
TLBWI instructions. This feature is required if Segmentation Control is implemented and is required for FTLB/
VTLB MMUs, optional otherwise.

For Release 3 processors which implement TLB invalidate instructions, the code to initialize the TLB is much sim-
pler. Just write each TLB entry with the EntryHiEHINV bit set.

/*
* InitTLB
*
* Initialize the TLB to a power-up state, guaranteeing that all entries
* are unique and invalid.
*
* Arguments:
* a0 = Maximum TLB index (from MMUSize field of C0_Config1)
*
* Returns:
* No value
*
* Restrictions:
* This routine must be called in unmapped space
* Algorithm:
* Write Each TLB entry with EntryHi.EHINV=1
*
* Notes:
* - The Hazard macros used in the code below expand to the appropriate
* number of SSNOPs in an implementation of Release 1 of the
* Architecture, and to an ehb in an implementation of Release 2 of
* the Architecture. See , “CP0 Hazards,” on page 116 for
* more additional information.
*/

4.11 TLB-Based Virtual Address Translation

MIPS® Architecture For Programmers Volume III: The MIPS64® and microMIPS64™ Privileged Resource Architecture, Revi-
sion 5.04 42

InitTLB:

/*
* Clear PageMask, EntryLo0 and EntryLo1 so that valid bits are off, PFN values
* are zero, and the default page size is used.
*/

dmtc0 zero, C0_EntryLo0 /* Clear out PFN and valid bits */
dmtc0 zero, C0_EntryLo1
mtc0 zero, C0_PageMask /* Clear out mask register */
ori t0, zero, 0x400
dmtc0 t0, C0_EntryHi /* Set EHINV bit, Clear VPN2 field */

10:
mtc0 a0, C0_Index /* Use this as next TLB index */
TLBW_Write_Hazard() /* Clear Index hazard (ssnop/ehb in R1/2) */
tlbwi /* Write the TLB entry */
bne a0, zero, 10b /* Branch if more TLB entries to do */
addiu a0, -1 /* Decrement the TLB index

/*
* Clear Index and EntryHi simply to leave the state constant for all
* returns
*/

mtc0 zero, C0_Index
dmtc0 zero, C0_EntryHi
jr ra /* Return to caller */
nop

4.11.4 Address Translation

Release 2 of the Architecture introduced support for 1KB pages, and larger physical addresses. For clarity in the dis-
cussion below, the following terms should be taken in the general sense to include the new Release 2 features:

When an address translation is requested, the virtual page number and the current process ASID are presented to the
TLB. All entries are checked simultaneously for a match, which occurs when all of the following conditions are true:

Term Used Below Release 2 Substitution Comment

VPN2 VPN2 || VPN2X Release 2 (and subsequent releases) implementa-
tions that support 1KB pages concatenate the
VPN2 and VPN2X field to form the virtual page
number for a 1KB page

PFN PFNX || PFN Release 2 (and subsequent releases) implementa-
tions that support larger physical addresses con-
catenate the PFNX and PFN fields to form th
physical page number

Mask Mask || MaskX Release 2 (and subsequent releases) implementa-
tions that support 1KB pages concatenate the
Mask and MaskX fields to form the don t care
mask for 1KB pages

 Virtual Memory

43MIPS® Architecture For Programmers Volume III: The MIPS64® and microMIPS64™ Privileged Resource Architecture, Re-
vision 5.04

• The current process ASID (as obtained from the EntryHi register) matches the ASID fiel in the TLB entry, or the
G bit is set in the TLB entry.

• Bits 63..62 of the virtual address match the region code in the R field of the TLB entr .

• The appropriate bits of the virtual page number match the corresponding bits of the VPN2 fiel stored within the
TLB entry. The “appropriate” number of bits is determined by the Mask field in each entry by ignoring each bit
in the virtual page number and the TLB VPN2 field corresponding to those bits that are set in the Mask field
This allows each entry of the TLB to support a different page size, as determined by the PageMask register at the
time that the TLB entry was written. If the recommended PageMask register is not implemented, the TLB opera-
tion is as if the PageMask register was written with the encoding for a 4KB page.

If a TLB entry matches the address and ASID presented, the corresponding PFN, C, V, and D bits (and optionally RI
and XI bits) are read from the translation section of the TLB entry. Which of the two PFN entries is read is a function
of the virtual address bit immediately to the right of the section masked with the Mask entry.

The valid and dirty bits (and optionally RI and XI bits) determine the fina success of the translation. If the valid bit is
off, the entry is not valid and a TLB Invalid exception is raised. If the dirty bit is off and the reference was a store, a
TLB Modifie exception is raised. If there is an address match with a valid entry and no dirty exception, the PFN and
the cache coherency bits are appended to the offset-within-page bits of the address to form the final physical addres
with attributes. If the RI bit is implemented and is set and the reference was a load, a TLB Invalid (or TLBRI) excep-
tion is raised. If the XI bit is implemented and is set and the reference was an instruction fetch, a TLB invalid (or
TLBXI) exception is raised.

For clarity, the TLB lookup processes have been separated into two sets of pseudo code:

1. One used by an implementation of Release 1 of the Architecture, or an implementation of Release 2 (and subse-
quent releases) of the Architecture which does not include 1KB page support (as denoted by Config3SP). This
instance is called the “4KB TLB Lookup”.

2. One used by an implementation of Release 2 (and subsequent releases) of the Architecture which does include
1KB page support. This instance is called the “1KB TLB Lookup”.

The 4KB TLB Lookup pseudo code is as follows:

found ← 0
for i in 0...TLBEntries-1

if (TLB[i]R = va63..62) and
 ((TLB[i]VPN2 and not (TLB[i]Mask)) = (vaSEGBITS-1..13 and not (TLB[i]Mask))) and
 (TLB[i]G or (TLB[i]ASID = EntryHiASID)) then

EvenOddBit selects between even and odd halves of the TLB as a function of
the page size in the matching TLB entry. Not all page sizes need
be implemented on all processors, so the case below uses an ‘x’ to
denote don’t-care cases. The actual implementation would select
the even-odd bit in a way that is compatible with the page sizes
actually implemented.
case TLB[i]Mask

0b0000 0000 0000 0000: EvenOddBit ← 12 /* 4KB page */
0b0000 0000 0000 0011: EvenOddBit ← 14 /* 16KB page */
0b0000 0000 0000 11xx: EvenOddBit ← 16 /* 64KB page */
0b0000 0000 0011 xxxx: EvenOddBit ← 18 /* 256KB page */
0b0000 0000 11xx xxxx: EvenOddBit ← 20 /* 1MB page */
0b0000 0011 xxxx xxxx: EvenOddBit ← 22 /* 4MB page */
0b0000 11xx xxxx xxxx: EvenOddBit ← 24 /* 16MB page */
0b0011 xxxx xxxx xxxx: EvenOddBit ← 26 /* 64MB page */

4.11 TLB-Based Virtual Address Translation

MIPS® Architecture For Programmers Volume III: The MIPS64® and microMIPS64™ Privileged Resource Architecture, Revi-
sion 5.04 44

0b11xx xxxx xxxx xxxx: EvenOddBit ← 28 /* 256MB page */
otherwise: UNDEFINED2

endcase
if vaEvenOddBit = 0 then

pfn ← TLB[i]PFN0
v ← TLB[i]V0
c ← TLB[i]C0
d ← TLB[i]D0
if (Config3RXI or Config3SM) then

ri ← TLB[i]RI0
xi ← TLB[i]XI0

endif
else

pfn ← TLB[i]PFN1
v ← TLB[i]V1
c ← TLB[i]C1
d ← TLB[i]D1
if (Config3RXI or Config3SM) then

ri ← TLB[i]RI1
xi ← TLB[i]XI1

endif
endif
if v = 0 then

SignalException(TLBInvalid, reftype)
endif
if (Config3RXI or Config3SM) then

if (ri = 1) and (reftype = load) then
if (xi = 0) and (IsPCRelativeLoad(PC))

PC relative loads are allowed where execute is allowed
else

if (PageGrainIEC = 0)
SignalException(TLBInvalid, reftype)

else
SignalException(TLBRI, reftype)

endif
endif

endif
if (xi = 1) and (reftype = fetch) then

if (PageGrainIEC = 0)
SignalException(TLBInvalid, reftype)

else
SignalException(TLBXI, reftype)

endif
endif

endif
if (d = 0) and (reftype = store) then

SignalException(TLBModified)
endif
pfnPABITS-1-12..0 corresponds to paPABITS-1..12
pa ← pfnPABITS-1-12..EvenOddBit-12 || vaEvenOddBit-1..0
found ← 1
break

endif

2. For brevity, the larger page sizes available through the BigPages feature (1GB and larger) are not shown. The larger page
sizes follow the same pattern - 1GB pages would use bit 30 for the EvenOddBit, 4GB would use bit 32. Please refer to Table
4.5 on page 47.

 Virtual Memory

45MIPS® Architecture For Programmers Volume III: The MIPS64® and microMIPS64™ Privileged Resource Architecture, Re-
vision 5.04

endfor
if found = 0 then

SignalException(TLBMiss, reftype)
endif

The 1KB TLB Lookup pseudo code is as follows:

found ← 0
for i in 0...TLBEntries-1

if (TLB[i]R = va63..62) and
 ((TLB[i]VPN2 and not (TLB[i]Mask)) = (vaSEGBITS-1..13 and not (TLB[i]Mask))) and
 (TLB[i]G or (TLB[i]ASID = EntryHiASID)) then

EvenOddBit selects between even and odd halves of the TLB as a function of
the page size in the matching TLB entry. Not all pages sizes need
be implemented on all processors, so the case below uses an ‘x’ to
denote don’t-care cases. The actual implementation would select
the even-odd bit in a way that is compatible with the page sizes
actually implemented.
case TLB[i]Mask

0b0000 0000 0000 0000 00: EvenOddBit ← 10 /* 1KB page */
0b0000 0000 0000 0000 11: EvenOddBit ← 12 /* 4KB page */
0b0000 0000 0000 0011 xx: EvenOddBit ← 14 /* 16KB page */
0b0000 0000 0000 11xx xx: EvenOddBit ← 16 /* 64KB page */
0b0000 0000 0011 xxxx xx: EvenOddBit ← 18 /* 256KB page */
0b0000 0000 11xx xxxx xx: EvenOddBit ← 20 /* 1MB page */
0b0000 0011 xxxx xxxx xx: EvenOddBit ← 22 /* 4MB page */
0b0000 11xx xxxx xxxx xx: EvenOddBit ← 24 /* 16MB page */
0b0011 xxxx xxxx xxxx xx: EvenOddBit ← 26 /* 64MB page */
0b11xx xxxx xxxx xxxx xx: EvenOddBit ← 28 /* 256MB page */
otherwise: UNDEFINED3

endcase
if vaEvenOddBit = 0 then

pfn ← TLB[i]PFN0
v ← TLB[i]V0
c ← TLB[i]C0
d ← TLB[i]D0
if (Config3RXI or Config3SM) then

ri ← TLB[i]RI0
xi ← TLB[i]XI0

endif
else

pfn ← TLB[i]PFN1
v ← TLB[i]V1
c ← TLB[i]C1
d ← TLB[i]D1
if (Config3RXI or Config3SM) then

ri ← TLB[i]RI1
xi ← TLB[i]XI1

endif
endif
if v = 0 then

SignalException(TLBInvalid, reftype)
endif
if (Config3RXI or Config3SM) then

3. For brevity, the larger page sizes available through the BigPages feature (1GB and larger) are not shown. The larger page
sizes follow the same pattern - 1GB pages would use bit 30 for the EvenOddBit, 4GB would use bit 32. Please refer to Table
4.5 on page 47.

4.11 TLB-Based Virtual Address Translation

MIPS® Architecture For Programmers Volume III: The MIPS64® and microMIPS64™ Privileged Resource Architecture, Revi-
sion 5.04 46

if (ri = 1) and (reftype = load) then
if (xi = 0) and (IsPCRelativeLoad(PC))

PC relative loads are allowed where execute is allowed
else

if (PageGrainIEC = 0)
SignalException(TLBInvalid, reftype)

else
SignalException(TLBRI, reftype)

endif
endif

endif
if (xi = 1) and (reftype = fetch) then

if (PageGrainIEC = 0)
SignalException(TLBInvalid, reftype)

else
SignalException(TLBXI, reftype)

endif
endif

endif
if (d = 0) and (reftype = store) then

SignalException(TLBModified)
endif
pfnPABITS-1-10..0 corresponds to paPABITS-1..10
pa ← pfnPABITS-1-10..EvenOddBit-10 || vaEvenOddBit-1..0
found ← 1
break

endif
endfor
if found = 0 then

SignalException(TLBMiss, reftype)
endif

Table 4.5 demonstrates how the physical address is generated as a function of the page size of the TLB entry that
matches the virtual address. The “Even/Odd Select” column of Table 4.5 indicates which virtual address bit is used to
select between the even (EntryLo0) or odd (EntryLo1) entry in the matching TLB entry. The “PA(PABITS-1)..0 Gener-
ated From” columns specify how the physical address is generated from the selected PFN and the offset-in-page bits
in the virtual address. In this column, PFN is the physical page number as loaded into the TLB from the EntryLo0 or
EntryLo1 registers, and has one of two bit ranges:

PFN Range PA Range Comment

PFN(PABITS-1)-12 0 PAPABITS-1 12 Release 1 implementation, or Release 2 (and sub-
sequent releases) implementation without support
for 1KB pages

PFN(PABITS-1)-10 0 PAPABITS-1 10 Release 2 (and subsequent releases) implementa-
tion with support for 1KB pages enabled

 Virtual Memory

47MIPS® Architecture For Programmers Volume III: The MIPS64® and microMIPS64™ Privileged Resource Architecture, Re-
vision 5.04

4.12 Segmentation Control

As an optional alternative to fi ed memory segmentation, a programmable segmentation control feature has been
added to MIPSr3. This improves the fl xibility of the MIPS64 virtual address space.

In the traditional MIPS64 virtual address memory map, the mappability and cacheability attributes of segments are
mostly fi ed. For example, useg has its mappability attribute fi ed while kseg0/1 have their cacheability and mappa-
bility attributes fi ed. Segmentation Control replaces these fi ed attributes with programmable controls for these
attributes.

Table 4.5 Physical Address Generation

Page Size
Even/Odd

Select

PA(PABITS-1)..0 Generated From:

1KB Page Support Unavailable
(Release 1) or

Disabled (Release 2 &
subsequent)

Release 2 (and subsequent)
with 1KB Page Support Enabled

1K Bytes VA10 Not Applicable PFN(PABITS-1)-10 0 || VA9 0

4K Bytes VA12 PFN(PABITS-1)-12 0 || VA11 0 PFN(PABITS-1)-10 2 || VA11 0

16K Bytes VA14 PFN(PABITS-1)-12 2 || VA13 0 PFN(PABITS-1)-10 4 || VA13 0

64K Bytes VA16 PFN(PABITS-1)-12 4 || VA15 0 PFN(PABITS-1)-10 6 || VA15 0

256K Bytes VA18 PFN(PABITS-1)-12 6 || VA17 0 PFN(PABITS-1)-10 8 || VA17 0

1M Bytes VA20 PFN(PABITS-1)-12 8 || VA19 0 PFN(PABITS-1)-10 10 || VA19..0

4M Bytes VA22 PFN(PABITS-1)-12 10 || VA21 0 PFN(PABITS-1)-10 12 || VA21 0

16M Bytes VA24 PFN(PABITS-1)-12 12 || VA23 0 PFN(PABITS-1)-10 14 || VA23 0

64MBytes VA26 PFN(PABITS-1)-12 14 || VA25 0 PFN(PABITS-1)-10 16 || VA25 0

256MBytes VA28 PFN(PABITS-1)-12 16 || VA27 0 PFN(PABITS-1)-10 18 || VA27 0

1 GBytes1

1. .This page size is available only if Config BPG=1.

VA30 PFN(PABITS-1)-12 18 || VA29 0 PFN(PABITS-1)-10 20 || VA29 0

4 GBytes1 VA32 PFN(PABITS-1)-12 20 || VA31 0 PFN(PABITS-1)-10 22 || VA31 0

16 GBytes1 VA34 PFN(PABITS-1)-12 22 || VA33 0 PFN(PABITS-1)-10 24 || VA33 0

64 GByte1s VA36 PFN(PABITS-1)-12 24 || VA35 0 PFN(PABITS-1)-10 26 || VA35 0

256 GBytes1 VA38 PFN(PABITS-1)-12 26 || VA37 0 PFN(PABITS-1)-10 28 || VA37 0

1 TBytes1 VA40 PFN(PABITS-1)-12 28 || VA39 0 PFN(PABITS-1)-10 30 || VA39 0

4 TBytes1 VA42 PFN(PABITS-1)-12 30 || VA41 0 PFN(PABITS-1)-10 32 || VA41 0

16 TBytes1 VA44 PFN(PABITS-1)-12 32 || VA43 0 PFN(PABITS-1)-10 34 || VA43 0

64 TBytes1 VA46 PFN(PABITS-1)-12 34 || VA45 0 PFN(PABITS-1)-10 36 || VA45 0

256 TBytes1 VA48 PFN(PABITS-1)-12 36 || VA47 0 PFN(PABITS-1)-10 38 || VA47 0

4.12 Segmentation Control

MIPS® Architecture For Programmers Volume III: The MIPS64® and microMIPS64™ Privileged Resource Architecture, Revi-
sion 5.04 48

The Segmentation Control system can be used to implement a fully translated flat address space, or used to alter th
relative size of cached and uncached windows into the physical address space.

The existence of the unmapped segments in the virtual address map prevents a MIPS CPU from being fully virtual-
ized. Another use of Segmentation Control is to remove the unmapped segments from the virtual address map. Future
support for CPU virtualization would require Segmentation Control.

With Segmentation Control, address translation begins by matching a virtual address to the region specified in a S g-
ment Configuration. The virtual address space is therefore definable as the set of memory gions specified by S g-
ment Configurations. The beh vior and attributes of each region are also specified by S gment Configurations. Si
Segment Configurations are defined, fully mapping the 32-bit Compatability virtual address spac

If Segmentation Control is implemented, the Segment Configurations are a ways active. Coprocessor 0 registers
SegCtl0, SegCtl1, and SegCtl2 contain six Segment Configurations as well as arious configuration field Config5
contains additional control and configuration field

The attributes of a Segment Configuration are

• Access permissions from user, kernel, and supervisor modes

• Enable mapping (address translation) using the MMU specified i ConfigMT

• Physical address when mapping is disabled

• Cache attribute when mapping is disabled

• Force to unmapped, uncached when StatusERL=1

Besides the segments controlled by SegCtl* registers, the reset and BEV exceptions may use another segment which
is active only in kernel mode. Please read Section 4.12.1 “Exception Behavior under Segmentation Control” for an
explanation on how exceptions interact with programmable segmentation.

The MIPS64 xkphys memory is divided into 8 regions, these regions are configurable via th SegCtl1XAM and the
SegCtl2XR register fields

On reset, Segment Configuration de ault is implementation specific. A configuration bac ard compatible with
MIPS64 legacy fi ed segmentation is defined b Table 9.18

Segment configuration access control modes are specified Table 9.17

When Segment Control is implemented (Config3SC = 1), addressing control bits StatusKX, StatusSX, StatusUX remain
active.

MIPS64 xkphys regions may be controlled via Segmentation Control. The xkphys memory regions are enabled by the
SegCtl2Xr field

For enabled MIPS64 xkphys regions, the KS, SX and UX bits of Status are used together with the xkphys access con-
trol mode. The xkphys access control mode is set with the SegCtl1XAM field

The access control mode has an associated minimum privelege level (Table 9.17), KERNEL (AM = UK, MK or
XKP), SUPERVISOR (AM = MSK) or USER (AM = MUSK, MUSUK or UUSK).

 Virtual Memory

49MIPS® Architecture For Programmers Volume III: The MIPS64® and microMIPS64™ Privileged Resource Architecture, Re-
vision 5.04

Access to xkphys regions with a minimum privelege level of KERNEL are allowed when the processor is operating
with KERNEL privelege and the StatusKX bit is set.

Access to xkphys regions with a minimum privelege level of SUPERVISOR are allowed when the processor is oper-
ating with SUPERVISOR or KERNEL privelege and the StatusSX, bit is set.

Access to xkphys regions with a minimum privelege level of USER are allowed when the processor is operating at
any privelege level and the StatusUX bit is set.

Operation of MIPS64 Segmentation Control is described below:

/* Inputs
* vAddr - Virtual Address
* pLevel - Privilege level - USER, SUPER, KERNEL
* IorD - Access type - INSTRUCTION or DATA
* LorS - Access type - LOAD or STORE
*
* Outputs
* mapped - segment is mapped
* pAddr - physical address (valid when unmapped)
* CCA - cache attribute (valid when unmapped)
*
* Exceptions: Address Error
*/

subroutine SegmentLookup(vAddr, pLevel, IorD, LorS) :
xkphys region lookup
if (vAddr[63:62] = 2) then

return xkphysRegionLookup(vAddr, pLevel, IorD, LorS)
endif
#32-Bit Compatability mode only
if (vAddr <= 0xFFFF_FFFF_8000_0000 AND

 vAddr >= 0x0000_0000_7FFF_FFFF) then
return legacyAddressTranslation(vAddr, pLevel, IorD, LorS)

endif

Index ← vAddr[31:29]
pAddr ← vAddr

case Index
7: CFG ← SegCtl0.CFG0
6: CFG ← SegCtl0.CFG1
5: CFG ← SegCtl1.CFG2
4: CFG ← SegCtl1.CFG3
3: CFG ← SegCtl2.CFG4
2: CFG ← SegCtl2.CFG4
1: CFG ← SegCtl2.CFG5
0: CFG ← SegCtl2.CFG5

endcase

AM ← CFG.AM
EU ← CFG.EU
PA ← CFG.PA
C ← CFG.C

checkAM(AM,pLevel,IorD,LorS)

4.12 Segmentation Control

MIPS® Architecture For Programmers Volume III: The MIPS64® and microMIPS64™ Privileged Resource Architecture, Revi-
sion 5.04 50

Special case - Error-Unmapped region when ERL=1
if (EU = 1) and (StatusERL=1) then

CCA ← 2 # uncached
mapped ← 0 # unmapped

else
CCA ← C
mapped ← isMapped(AM, pLevel,IorD, LorS)

endif

Physical address for unmapped use
if (mapped = 0) then

in a large (1GB) segment, drop the low order bit.
if (Index < 4) then

pAddr[35:30] ← PA >> 1
else

pAddr[35:29] ← PA
endif

else
(CCA,pAddr) ← TLBLookup(vAddr)

endif

return (mapped, pAddr, CCA)
endsub

xkphys region lookup
subroutine xkphysRegionLookup(vAddr, pLevel, IorD, LorS)

xkphysIndex ← vAddr[61:59]

An address error exception is raised
if vAddr[58:PABITS] is non-zero
if (vAddr[58:PABITS] != 0) then

segmentError(IorD, LorS)
endif

regionEnable ← SegCtl2.XR[xkphysIndex]
if (regionEnable=1) then

AM ← SegCtl1.XAM
checkAM(AM,pLevel,IorD,LorS)

Check minimum privelege level
case AM

UK: min_pLevel ← KERNEL
MK: min_pLevel ← KERNEL
MSK: min_pLevel ← SUPER
MUSK: min_pLevel ← USER
MUSUK: min_pLevel ← USER
XKP: min_pLevel ← KERNEL
USK: min_pLevel ← SUPER
UUSK: min_pLevel ← USER

endcase

if ((StatusKX=0 and min_pLevel=KERNEL) or
 (StatusSX=0 and min_pLevel=SUPER) or
 (StatusUX=0 and min_pLevel=USER)) then
segmentError(IorD, LorS)

endif

mapped ← isMapped(AM,pLevel)

 Virtual Memory

51MIPS® Architecture For Programmers Volume III: The MIPS64® and microMIPS64™ Privileged Resource Architecture, Re-
vision 5.04

if (mapped=1) then
(CCA,pAddr) ← TLBLookup(vAddr)
return (mapped, pAddr, CCA)

endif
endif

#region lookup disabled, or unmapped
CCA ← vAddr[61:59] # what we do today for xkphys
pAddr ← vAddr[PABITS-1:0]
return (0, pAddr, CCA)

endsub

Access mode check
subroutine checkAM(AM, pLevel, IorD, LorS)

case AM
UK: seg_err ← (pLevel != KERNEL)
MK: seg_err ← (pLevel != KERNEL)
MSK: seg_err ← (pLevel = USER)
MUSK: seg_err ← 0
MUSUK: seg_err ← 0
USK: seg_err ← (pLevel = USER)
UUSK: seg_err ← 0
default: seg_err ← UNDEFINED

endcase

if (seg_err != 0) then
segmentError(IorD, LorS)

endif
endsub

subroutine isMapped(AM, pLevel,IorD, LorS)
case AM

UK: mapped ← 0
MK: mapped ← 1
MSK: mapped ← 1
MUSK: mapped ← 1
MUSUK: mapped ← (pLevel != KERNEL)
USK: mapped ← 0
UUSK: mapped ← 0
default: mapped ← UNDEFINED

endcase
return mapped

endsub

subroutine segmentError(IorD, LorS)
if (IorD = INSTRUCTION) then

reftype ← FETCH
else

if (LorS = LOAD) then
reftype ← LOAD

else
reftype ← STORE

endif
endif
SignalException(AddrError, reftype)

endsub

4.12 Segmentation Control

MIPS® Architecture For Programmers Volume III: The MIPS64® and microMIPS64™ Privileged Resource Architecture, Revi-
sion 5.04 52

See Section 9.13 “SegCtl0 (CP0 Register 5, Select 2)”.

The presence of this facility is indicated by the SC field in th Config3 register. See Section 9.45 “Configuration
Register 3 (CP0 Register 16, Select 3)”.

Debug mode behavior is retained in dseg.

4.12.1 Exception Behavior under Segmentation Control

4.12.1.1 Terminology

For this section discussing exception behavior under Segmentation Control, these terms are used:

Legacy Memory map - A MIPS64 Virtual/Physical memory system as described by Section 4.3 on page 28.

Non-Reset Exceptions - exceptions which would use EBase for the vector location when StatusBEV=0

Overlay Segment - A memory segment with these properties:

• Totally managed by hardware, not software programmable.

• Intercepts memory requests before they are dealt with by the rest of the virtual memory system.

• Is active only in specific xecution modes.

A pre-existing example of an overlay segment is DSEG which is part of the EJTAG debug architecture and is only
active in DebugMode. and ECRProbeEn=1

4.12.1.2 Reset and BEV Vector Base Addresses under Segmentation Control

In the legacy memory map, the Reset/BEV vector base is fi ed at virtual address 0xFFFF.FFFF.BFC0.0000 and
physical address 0x0000.0000.1FC0.0000.

In contrast, Segmentation Control does not defin a fi ed value for the Reset/BEV vector base virtual address. Instead
the virtual addresses and physical addresses for Reset/BEV vector base are considered implementation-specific. I
Segmentation Control, the physical address of Reset/BEV vector does not have to be derived from the virtual address
by dropping VA[31:29], other mappings are allowed.

Reset and BEV exceptions - Cacheability and Map-ability

In the legacy memory map, the memory accesses to the Reset/BEV vector region are within KSEG1, which ensures
the accesses to this region are always uncached and unmapped.

The architecture requires that the reset and BEV exceptions vector to a memory region which is uncached and
unmapped.

Solution 1 - Uncached and Unmapped Segment always available

This architecture requirement can be satisfied if the system can guarantee these conditions

1. One of the segments always powers up as uncached and unmapped for kernel mode.

2. That segment is always kept as uncached and unmapped for kernel mode.

 Virtual Memory

53MIPS® Architecture For Programmers Volume III: The MIPS64® and microMIPS64™ Privileged Resource Architecture, Re-
vision 5.04

3. The reset and BEV vectors always reside in the above mentioned segment.

If these conditions are met, then no special support is needed for reset and BEV exceptions.

Solution 2 - Overlay Segments for Reset and BEV exceptions

Not all systems may want to maintain the conditions for Solution 1, since Segmentation Control allows for any of the
segments to be programmed with any valid cache-ability and mappability attribute.

To meet the architecture requirement without reserving one segment as uncached and unmapped, overlay segments
are introduced in Segmentation Control for reset and exceptions while in kernel mode.

These overlay segments allow the reset/BEV regions to be accessed without accessing the caches and TLB during
reset and BEV exceptions. That is, when a reset or BEV exception is taken, the overlay segment handles the memory
requests for that vector region and the overlay segment attributes over-rides the cacheability and mappability
attributes of the regular segment control register.

If Solution 1 is not implemented, the CPU must implement at least one overlay segment for the Reset/BEV vector
location. If there is only one overlay segment for the Reset/BEV vector location, it must deal with memory requests
as uncached and unmapped.

Solution 2 - Requirements for Overlay Segments

The starting virtual address, starting physical address and size of this overlay segment are implementation-specific
The overlay segments must be naturally aligned both in the virtual address space as well as the physical address
space. The physical address of the overlay segment does not have to be derived from the virtual address of the overlay
by dropping VA[31:29], other mappings are allowed.

The overlay segment must be at least 2KB in size. Implementations would likely choose much larger sizes for the
overlay segment to access non-volatile memory and potentially other IO devices.

The overlay segment must be accessible while in kernel-mode (StatusERL=1 or StatusERL=1 or StatusKSU=kernel).

Solution 2 - Option A - Two Overlay Segments for KSEG0/1 legacy behavior

An implementation may optionally support a second overlay segment for the Reset/BEV vector physical address
region. The purpose of two overlay segments is to mimic the cached and uncached views made available through
KSEG0 and KSEG1 segments in the legacy memory system. After reset, one overlay segment would be given
uncached and unmapped access to these vectors while the other overlay segment would give cached and unmapped
access to the vectors.

The two overlay segments must meet these requirements:

• The two overlay segments are of the same size.

• The two overlay segments cannot overlap in the virtual address space.

• The two overlay segments must point to the same physical address space.

• Both overlay segments must treat memory accesses as unmapped.

• The overlay segment in which the BEV/Reset vector location resides must come out of reset treating mem-
ory accesses as uncached.

4.12 Segmentation Control

MIPS® Architecture For Programmers Volume III: The MIPS64® and microMIPS64™ Privileged Resource Architecture, Revi-
sion 5.04 54

• The cache coherency of each overlay segment can be fi ed by hardware or programmable through the leg-
acy register fields i Config (see next section).

To mimic the legacy KSEG0/KSEG1 behaviors, one overlay segment would be located within the addresses which
belong to SEGCTL1CFG3 (virtual addresses equivalent to legacy KSEG0 segment) and the other overlay segment
would be located within the addresses which belong to SEGCTL1CFG2(virtual addresses equivalent to legacy KSEG1
segment).

Solution 2 - Option B - Overly Segments using legacy Coherency Control Register Fields

Segmentation Control allows the legacy ConfigK0, ConfigK23 and ConfigKU fields to control cacheability of thei
respective non-legacy segments coming out of reset. This is in effect when Config5K =0. If the overlay segment
resides in one of these segments, it is optionally allowed for the overlay segment to get its cacheability attribute from
the appropriate field K0, K23, KU) within the Config register. If the BEV/Reset vector resides in a overlay segment
which is controlled by that Config register field, then that r gister field must be set by hard are to uncached CCA
value upon reset.

The use of these register field allows the boot firm are to be run cached after the caches have been initialized. Code
should not be executing within the overlay segment while the cache coherency of the overlay segment would be
changing through writing the Config register field

For example, if the Reset/BEV overlay segments resides within the segment controlled by SEGCTL1CFG3 (virtual
addresses equivalent to legacy KSEG0 segment) and ConfigK0 is enabled coming out of reset, ConfigK0 must be reset
to the uncached CCA value. When ConfigK0 is modified, code xecution should not be within the SEGCTL1CFG3 seg-
ment.

NOTE: This use of these legacy coherency fields within th Config register is only meant for systems using legacy
virtual address maps. For systems using non-legacy virtual address maps, the recommendation is to disable the legacy
coherency fields within th Config register.

Solution 1 or Solution 2 - Option C - Relocation of non-Reset BEV exception vectors after Reset

There might be transitional devices in which the physical address map was inherited from legacy systems, but the vir-
tual address map to be used is set up by programming the Segmentation Control registers. For such transitional
devices, it might be useful to relocate the non-Reset BEV exceptions to an address more appropriate for the non-leg-
acy virtual address map. Such capability is allowed by Segmentation Control.

The Config5K bit can be used for this purpose. If Config5K =1, it is allowed to relocate the BEV vector base address
for non-reset exceptions.

This feature would be used in this fashion:

1. Device boots up using legacy reset location (e.g. virtual address 0xFFFF.FFFF.BFC0.0000)

2. Segmentation Registers are programmed to new non-legacy address map.

3. BEV vector base moved to new location using this capability. Non-Reset BEV exceptions would now use this
new location.

For the rest of this section, the following names are used:

 Virtual Memory

55MIPS® Architecture For Programmers Volume III: The MIPS64® and microMIPS64™ Privileged Resource Architecture, Re-
vision 5.04

• EffectiveBEV_VA - the virtual address of the reset/BEV vector

4.12.1.3 BEV Exceptions under Segmentation Control

As compared to a legacy system, the vector offsets are unchanged while the source of the vector base address is
changed.

For Reset/Soft-Reset/NMI, the reset vector is located at virtual address (EffectiveBEV_VA).

If StatusBEV=1 during other exceptions, the vectors are located at virtual address (EffectiveBEV_VA + 0x200 + off-
set).

Requirements for Option 2 - Overlay Segments

If there is only one overlay segment for BEV/Reset, then the overlay segment deals with these memory requests as
unmapped and uncached. The overlay segment is active in Kernel mode (DebugDM=0 and (StatusKSU=Kernel or
StatusERL=1 orStatusEXL=1)).

If implemented, the second overlay segment is active at the same time as the first BEV/Reset verlay segment. If
there are two overlay segments, the one which contains the reset/BEV vector must use uncached and unmapped
behavior coming out of reset. Both overlay segments must use unmapped coherency.

If Config5K =0 and the overlay resides in a segment that is controlled by one of the ConfigK0, ConfigK23 and ConfigKU

register fields it is allowed for the appropriate Config register fiel to control the cacheability attribute of the overlay
segment.

4.12.1.4 Debug Exceptions under Segmentation Control

ECRProbTrap=0

As compared to a legacy system, the vector offset is unchanged while the source of the vector base address is
changed.

The debug exception vector is located at (EffectiveBEV_VA + 0x480).

Requirements for Option 2 - Overlay Segments

The sole debug overlay segment is active when ECRProbeEn=1 and DebugDM=1. A second overlay segment is
not allowed for Debug exceptions.

The overlay segment deals with these memory requests as unmapped.

If Config5K =0 and the overlay resides in a segment that is controlled by one of the ConfigK0, ConfigK23 and
ConfigKU register fields, it is all wed for the appropriate Config register field to control the cacheability attri ute
of the overlay segment. Otherwise, the overlay segment deals with these memory requests as uncached.

ECRProbTrap=1 and ECREn=1

The debug exception vector is located at virtual address 0xFFFF.FFFF.FF20.0200. This virtual address is the
same as in the legacy system.

4.12 Segmentation Control

MIPS® Architecture For Programmers Volume III: The MIPS64® and microMIPS64™ Privileged Resource Architecture, Revi-
sion 5.04 56

The memory requests to that region are handled by the Debug overlay segment, which covers the Virtual address
region of 0xFFFF.FFFF.FF20.0000 to 0xFFFF.FFFF.FF3F.FFFF. This overlay segment is active when ECRPro-

beTrap=1 and ECREn=1 and DebugDM=1. This DSEG overlay segment takes precedence over the other overlay
segments.

4.12.1.5 EBase Exceptions under Segmentation Control

If StatusBEV=0, then exception vectors are located at virtual address (Ebase[31:12] || 0x000 + offset). These virtual
addresses are the same as those in the legacy system (except now the upper 2 bits of the Ebase register are now also
writeable.

The memory requests to that region are handled by the appropriate programmable segment.

Extended Exception Vector Placement (EBase Register)

The EBase register is modified to all w exception vectors to be located anywhere in the address space. See Figure
9.41.

4.12.1.6 Cache Error Exceptions under Segmentation Control

The Cache Error Exception operates as defined in the base architecture, with the foll wing additions.

Each Segment Configuration contains an EU bit. When EU=1, the s gment becomes uncached and unmapped when
StatusERL=1. On reset, this bit is set for segments covering the range 0x00000000_00000000 to
0x00000000_7FFFFFFF, to match kuseg behavior.

On a Cache Error exception, the legacy behavior requires that bit 29 of the exception vector is set true when
StatusBEV=0 and the EBase register is present. This places the exception vector in the uncached kseg1 region.

Setting Config5CV=1 allows this behavior to be overridden - the exception vector is taken directly from the EBase

register. This feature should be used alongside Segment Configuratio EU field to ensure that code is executed from
an uncached region in the event of a Cache Error exception.

The exception vector is computed as follows:

if StatusBEV = 1 then
PC ← 0xFFFF FFFF BFC0 0200 + 0x100

else
if ArchitectureRevision ≥ 2 then

if (Config3SC=1) and (Config5CV=1) then
/* Use full value of EBase */
PC ← EBase63..12 || 0x100

else
/* EBase31..29 ignored, resulting PC always in kseg1 */
PC ← 0xFFFF.FFFF || 1012 || EBase28..12 || 0x100

endif
else

PC ← 0xFFFF FFFF A000 0000 + 0x100
endif

endif

 Virtual Memory

57MIPS® Architecture For Programmers Volume III: The MIPS64® and microMIPS64™ Privileged Resource Architecture, Re-
vision 5.04

4.13 Enhanced Virtual Addressing

The addition of Segmentation Control and kernel load/store instructions to the MIPS architecture provide the ability
to configur virtual address ranges in the 32-bit Compatability region that exceed prior fi ed segmentation limits and
to access user address space from kernel mode.

The Enhanced Virtual Addressing (EVA) feature is a configuration of S gmentation Control (refer to Section
4.12 “Segmentation Control”) and a set of kernel mode load/store instructions allowing direct access to user memory
from kernel mode. In EVA, Segmentation Control is programmed to define t o address ranges, a 3 GB range with
mapped-user, mapped-supervisor and unmapped-kernel access modes and a 1 GB address range with mapped-kernel
access mode.

4.13.1 EVA Segmentation Control Configuration

EVA is a 2 section partitioning of the 32-bit Compatability region virtual address space.

• 3.0GB Mapped User, Mapped Supervisor, Unmapped Kernel

• 1.0GB Mapped Kernel

The legacy fi ed segmentation of the 32-bit Compatability region virtual address space limited user addressable
memory to 2.0GB as shown in Figure 4.4.

Figure 4.4 Legacy addressability

Where the EVA programmed segmentation of the 32-bit Compatability region virtual address space extends user
addressable memory to 3.0GB as shown in Figure 4.5.

0.0 GB

2.0 GB

3.0 GB

3.5 GB

4.0 GB

2.5 GB

useg - mapped

User Addressable

Addres
s E

rro
r

kseg3 - mapped

kseg2 - mapped

kseg1 - uncached, unmapped

kseg0 - cached, unmapped

Kernel Addressable

kuseg - mapped

4.13 Enhanced Virtual Addressing

MIPS® Architecture For Programmers Volume III: The MIPS64® and microMIPS64™ Privileged Resource Architecture, Revi-
sion 5.04 58

Figure 4.5 EVA addressability

Figure 4.6 shows how the Segmentation Control CFG’s remap the legacy fi ed partitioning.

Figure 4.6 Legacy to EVA address configuration

To support the EVA configuration, each S gment Configuration field (CFG (defined in gmentation Control” on
page 47)) must be initialized to defin the overall memory map to support a 3GB (mapped user/supervisor, unmapped
kernel) memory segment.

0.0 GB

3.0 GB

4.0 GB

User Addressable Kernel Addressable

Addres
s E

rro
r

0.0 GB

3.0 GB

4.0 GB

ev_useg - Mapped

ev_kmseg - Mapped

ev_kseg - UnMapped,ev_kuseg - Mapped,
accessed using
regular
load/store
instructions

accessed using
EVA
load/store
instructions

same TLB mappings

Kernel Addressable

Addres
s E

rro
r

usin
g EVA

load/sto
re

instr
s

kseg3

useg

0.0 GB

2.0 GB

3.0 GB

3.5 GB

4.0 GB

Virtual Address Space

ksseg

kseg1

kseg0

2.5 GB

Legacy 32-bit statically partitioned

CFG0

EVA Segmentation Control configuration

CFG4

CFG2

CFG1

CFG3

CFG5

Mapped Kernel

Mapped User, Supervisor

Umapped Kernel

4.0 GB

3.5 GB

3.0 GB

2.5 GB

2.0 GB

1.0 GB

0.0 GB

 Virtual Memory

59MIPS® Architecture For Programmers Volume III: The MIPS64® and microMIPS64™ Privileged Resource Architecture, Re-
vision 5.04

To configur Segmentation Control to implement EVA, the AM, PA, C and EU field of each CFG are programmed as
follows in the following table.

4.13.2 Enhanced Virtual Address (EVA) Instructions

EVA defines a number of n w load/store instructions that are used to allow the kernel to access user virtual address
space while executing in kernel mode

For example, the kernel can copy data from user address space to kernel physical address space by using these
instructions with user virtual addresses. Kernel system-calls from user space can be conveniently changed by replac-
ing normal load/store instructions with these instructions. Switching modes (kernel to user) is an alternative but this is
an issue if the same virtual address is being simultaneously used by the kernel. Further, there is a performance penalty
in context-switching.

Limitations on use of the EVA load/store instructions are as follows:

• Only usable from Kernel execution mode.

• Only usable on a memory segment configured with a User access mode (AM)

• The address translation selected will be mapped if possible, else unmapped. More simply, a TLB based
address translation is preferred.

Refer to Volume II of the MIPS Architectural Reference manual for further information on the EVA Load/Store
instructions. The availabilty of these instructions are indicated by the Config5EVA register field

Table 4.7 lists kernel load/store instructions.

Table 4.6 Segment Configuration for 3GB EVA in 32-bit Compatibility region

CFG Description AM PA C EU

0 1GB Mapped Ker-
nel

MK 0x007 3 0

1 MK 0x006 3 0

2 3GB Mapped User,
Supervisor,
Unmapped Kernel
Region

MUSUK 0x005 3 1

3 MUSUK 0x004 3 1

4 MUSUK 0x002 3 1

5 MUSUK 0x000 3 1

Table 4.7 EVA Load/Store Instructions

Instruction Mnemonic Instruction Name

CACHEE Perform Cache Operation EVA

LBE Load Byte EVA

LBUE Load Byte Unsigned EVA

LHE Load Halfword EVA

LHUE Load Halfword Unsigned EVA

LLE Load-Linked EVA

4.13 Enhanced Virtual Addressing

MIPS® Architecture For Programmers Volume III: The MIPS64® and microMIPS64™ Privileged Resource Architecture, Revi-
sion 5.04 60

Table 4.8 lists the type of address translation (mapped/unmapped) performed by EVA load/store instructions accord-
ing to Segmentation Control access mode (AM) and processor execution mode (defined b StatusKSU = Kernel,
Supervisor or User). A Coprocessor 0 unusable exception is thrown if the instruction is executed in other than Kernel
mode. An Address Error exception is thrown if the access mode is not allowed.

Table 4.9 lists the type of address translation (mapped/unmapped) performed by ordinary load/store instructions
according to Segmentation Control access mode (AM) and processor execution mode (defined b StatusKSU = Ker-
nel, Supervisor or User). An Address Error exception is thrown if the access mode is not allowed in the current exe-
cution mode.

LWE Load Word EVA

LWLE Load Word Left EVA

LWRE Load Word Right EVA

PREFE Prefetch EVA

SBE Store Byte EVA

SCE Store Conditional EVA

SHE Store Halfword EVA

SWE Store Word EVA

SWLE Store Word Left EVA

SWRE Store Word Right EVA

Table 4.8 Address translation behavior for EVA load/store instructions

AM- Access Mode Kernel Supervisor User

UK Address Error Excpt COP0 Unusable Excpt COP0 Unusable Excpt

MK Address Error Excpt COP0 Unusable Excpt COP0 Unusable Excpt

MSK Address Error Excpt COP0 Unusable Excpt COP0 Unusable Excpt

MUSK mapped COP0 Unusable Excpt COP0 Unusable Excpt

MUSUK mapped COP0 Unusable Excpt COP0 Unusable Excpt

USK Address Error Excpt COP0 Unusable Excpt COP0 Unusable Excpt

UUSK unmapped COP0 Unusable Excpt COP0 Unusable Excpt

Table 4.9 Address translation behavior for ordinary load/store instructions

AM - Access Mode Kernel Supervisor User

UK unmapped Address Error Excpt Address Error Excpt

MK mapped Address Error Excpt Address Error Excpt

MSK mapped mapped Address Error Excpt

MUSK mapped mapped mapped

MUSUK unmapped mapped mapped

USK unmapped unmapped Address Error Excpt

UUSK unmapped unmapped unmapped

Table 4.7 EVA Load/Store Instructions

Instruction Mnemonic Instruction Name

 Virtual Memory

61MIPS® Architecture For Programmers Volume III: The MIPS64® and microMIPS64™ Privileged Resource Architecture, Re-
vision 5.04

4.14 Hardware Page Table Walker

Page Table Walking is the process by which a Page Table Entry (PTE) is located in memory. Hardware acceleration
for page table walking is an optional feature in the architecture. The mechanism can be used to replace the software
handler for the TLB Refill or XTLB Refill condition. This har are mechanism is only used for this fast-path han-
dler. This hardware mechanism is not used for the TLB Invalid handler (or slow-path handler).

The MIPS Privileged Resource Architecture (PRA) includes mechanisms intended for rapid handling of TLB excep-
tions in software. Following a TLB-related exception, the Context and XContext registers can provide the address of a
TLB entry - calculated from the faulting virtual address and a Page Table Base address. This mechanism is effective
when the OS page table is single level, the TLB entry is 16 bytes in size, and a 4k physical page size is used. Unfortu-
nately, modern operating systems use multi-level page tables, use different page sizes, and store TLB entries in 8, 16
byte and 32-byte forms.

The existence of the Hardware Page Walking feature is denoted when Config3PW=1.

The Hardware Page Table Walker feature additionally includes enhancements to page table entry format, as follows:

1. Huge Page support in directories (non-leaf levels of the Page Table hierarchy), and Base Page Size for the (Page
Table Entry (PTE) levels (leaf levels of the Page Table hierarchy). This is the baseline definition. Inferred siz
PTEs are supported at non-leaf levels.

2. A reserved field has been added to PTEs. This field is for future xtensions.

A Huge Page may logically be specified in t o ways:

1. A Huge Page is a region composed of two power-of-4 pages which have adjacent virtual and physical addresses.
Since the even page and the odd page are derived from a single directory entry, they will both inherit the same
attributes and all but one of the address bits from the single directory entry. The memory region is divided evenly
between the even page and the odd page. The physical address held within the directory entry is aligned to 2 x
size of the page (which is a power of 4). This is distinct from EntryLo0 and EntryLo1 pairs in the Page Table
which are only guaranteed to be adjacent in virtual, but not physical address. They may also have differing page
attributes. This method is known as Adjacent Pages since the EntryLo0/1 physical addresses are both derived
from one entry and have to be adjacent in the physical address space. This is the default method that is supported
by this specification. If an implementation chooses to support Huge ages in the directory levels, then the Adja-
cent Page method must be implemented.

2. Where a Huge Page is itself a power-of-4 page, it is handled in exactly the same manner as a Base Page in the
Page Table. For this case, one directory entry is used for the even page and the adjacent directory entry is used
for the odd page. The physical address held within the directory entry is aligned to the size of the page (which is
a power of 4). This method is known as Dual Pages since each PFN does not have to be adjacent to each other. If
an implementation chooses to support Huge Pages in the directory levels, then the Dual Page method is an addi-
tional option.

Examples of power-of-4 regions(start with 1KB and multiply by 4 a number of times): 256MB, 1MB, 4MB, 16MB,
64MB, 256MB, 1GB.

Examples of 2x power-of-4 regions (start with 1KB and multiply by 4 a number of times; then multiple by 2) 512MB,
2MB, 8MB, 32MB, 128MB, 512MB, 2GB.

4.14 Hardware Page Table Walker

MIPS® Architecture For Programmers Volume III: The MIPS64® and microMIPS64™ Privileged Resource Architecture, Revi-
sion 5.04 64

// it’s globally enabled and

PWCtlPWEn=1 and

// There’s a page table structure to walk

((PWCtlPWDirExt=1 & PWSizeBDW>0) | PWSizeGDW>0 | PWSizeUDW>0 | PWSizeMDW>0) and

// and there’s a segment to map

((PWSizePS=0) | (PWSizePS=1 & (PWCtlXK=1 | PWCtlXS=1 | PWCtlXU=1))).

Memory reads during hardware page table walking are performed as if they were kernel-mode load instructions.
Addresses contained in the PWBase register and in memory-resident directories are virtual addresses.

Physical addresses and cache attributes are obtained from the Segment Configuration system whe Config3SC=1, or
from the default MIPS segment system when Config3SC=0.

The hardware page walk write should treat the multiple-hit case the same as a TLBWR. Assuming that the write by
design cannot detect all duplicates, then a preferred implementation is to invalidate the single duplicate and then write
the TLB. A Machine Check exception may subsequently be taken on a TLBP or lookup of TLB.

If a synchronous exception condition is detected during the hardware page table walk, the HW walking process is
aborted and a TLB Refill or XTLB Refill xception will be taken, as appropriate. This includes synchronous excep-
tions such as Address Error, Precise Debug Data Break and other TLB exceptions resulting from accesses to mapped
regions.

If an asynchronous exception is detected during the hardware page table walk, the HW walking process is aborted
and the asynchronous exception is taken. This includes asynchronous exceptions such as NMI, Cache Error, and
Interrupts. It also includes the asynchronous Machine Check exception which results from multiple matching entries
being present in the TLB following a TLB write.

Implementations are not required to support hardware page table walk reads from mapped regions of the Virtual
Address space. If an implementation does not support reads from mapped regions, an attempted access during a page
table walk will cause the process to be aborted, and a TLB Refil or XTLB Refil exception will be taken, as appropri-
ate.

On 64-bit machines, the hardware page table walk can be used to accelerate TLB refills for either 32 bit or 64 bi
address regions, but not both. The PWSizePS fiel controls whether pointers within Directories are treated as 32 or 64
bit addresses.

The selection between TLB and XTLB Refill xception is determined from the faulting address and the UX, SX and
KX bits in the Status register. See the MIPS64 Privileged Resource Architecture document for details.

Hardware page table walking is performed as follows:

1. A temporary pointer is loaded with the contents of the PWBase register

2. The native pointer size is determined from the PWSizePS field - either 4 bytes (32 bits) or 8 bytes (64 bits

3. If the (optional) Base Directory is disabled by PWCtlPWDirExt=0, skip to the next step.

 Virtual Memory

65MIPS® Architecture For Programmers Volume III: The MIPS64® and microMIPS64™ Privileged Resource Architecture, Re-
vision 5.04

• If Huge Pages are supported, check PTEVld bit to determine if entry is PTE. If PTEVld bit is set, write Huge
Page into TLB (details left out for brevity, read pseudo-code at end of this section). Page Walking is com-
plete after Huge Page is written to TLB.

• Extract PWSizeBDW bits from the faulting address, with least-significan bit PWFieldBDI. This is the optional
Base Directory index (Bindex). Logical OR onto the temporary pointer, after multiplying (shifting) by the
native pointer size. The result is a pointer to a location within the Base Directory.

• Perform a memory read from the address in the temporary pointer, of the native pointer size. The returned
value is placed into the temporary pointer. If an exception is detected, abort.

4. If the Global Directory is disabled by PWSizeGDW=0, skip to the next step.

• If Huge Pages are supported, check PTEVld bit to determine if entry is PTE. If PTEVld bit is set, write Huge
Page into TLB (details left out for brevity, read pseudo-code at end of this section). Page Walking is com-
plete after Huge Page is written to TLB.

• Extract PWSizeGDW bits from the faulting address, with least-significant bi PWFieldGDI. This is the Global
Directory index (Gindex). Logical OR onto the temporary pointer, after multiplying (shifting) by the native
pointer size. The result is a pointer to a location within the Global Directory.

• Perform a memory read from the address in the temporary pointer, of the native pointer size. The returned
value is placed into the temporary pointer. If an exception is detected, abort.

5. If the Upper Directory is disabled by PWSizeUDW=0, skip to the next step.

• If Huge Pages are supported, check PTEVld bit to determine if entry is PTE. If PTEVld bit is set, write Huge
Page into TLB (details left out for brevity, read pseudo-code at end of this section). Page Walking is com-
plete after Huge Page is written to TLB.

• Extract PWSizeUDW bits from the faulting address, with least-significant bi PWFieldUDI. This is the Upper
Directory index (Uindex). Logical OR onto the temporary pointer, after multiplying (shifting) by the native
pointer size. The result is a pointer to a location within the Upper Directory.

• Perform a memory read from the address in the temporary pointer, of the native pointer size. The returned
value is placed into the temporary pointer. If an exception is detected, abort.

6. If the Middle Directory is disabled by PWSizeMDW=0, skip to the next step.

• If Huge Pages are supported, check PTEVld bit to determine if entry is PTE. If PTEVld bit is set, write Huge
Page into TLB (details left out for brevity, read pseudo-code at end of this section). Page Walking is com-
plete after Huge Page is written to TLB.

• Extract PWSizeMDW bits from the faulting address, with least-significan bit PWFieldMDI. This is the Middle
Directory index (Mindex). Logical OR onto the temporary pointer, after multiplying (shifting) by the native
pointer size. The result is a pointer to a location within the Middle Directory.

• Perform a memory read from the address in the temporary pointer, of the native pointer size. The returned
value is placed into the temporary pointer. If an exception is detected, abort.

• The temporary pointer now contains the address of the Page Table to be used.

4.14 Hardware Page Table Walker

MIPS® Architecture For Programmers Volume III: The MIPS64® and microMIPS64™ Privileged Resource Architecture, Revi-
sion 5.04 66

7. Extract PWSizePTW bits from the faulting address, with least-significant bi PWFieldPTI This is the Page Table
index (PTindex). Multiply (shift) by the native pointer size, then multiply (shift) by the size of the Page Table
Entry, specified i PWSizePTEW.

• The temporary pointer now contains the address of the first half of the age Table Entry.

• Perform a memory read from the address in the temporary pointer, of the native pointer size. The returned
value is logically shifted right by PWFieldPTEI bits. This is the firs half of the Page Table Entry. If an excep-
tion is detected, abort.

8. In the temporary pointer, set the bit located at bit location PWFieldPTEI-1.

• The temporary pointer now contains the address of the second half of the Page Table Entry.

• Perform a memory read from the address in the temporary pointer, of the native pointer size. The returned
value is shifted right by PWFieldPTEI bits. This is the second half of the Page Table Entry. If an exception is
detected, abort.

9. Write the two halves of the Page Table Entry into the TLB, using the same semantics as the TLBWR (TLB write
random) instruction.

10. Continue with program execution.

Coprocessor 0 registers which are used by software on TLB or XTLB refill xceptions are unused by the hardware
page table walking process. The registers and fields used by soft are are BadVAddr, EntryHi, PageMask, EntryLo0,
EntryLo1, XContextBadVPN2 and ContextBadVPN2.

4.14.2 PTE and Directory Entry Format

All entries are read from in-memory data structures. There are three types of entries in the baseline definition: Direc
tory Pointer, Huge Page non-leaf PTE of inferred size, and leaf PTE of base size. For options other than baseline, the
entry type is a function of the table level and the PTEvld field of an entr . For all but the last level table (leaf level),
the PTEvld bit is 0 for directory pointers to the next table and 1 for PTEs. In the leaf table, the entry is alway a PTE
and the PTEvld bit is not used by Hardware Walker. The PWCtlHugePg register field indicates whether Huge age
non-leaf PTEs are implemented.

All PTEs are shifted right by PWFieldPTEI -2 (shifting in zeros at the most significant bit) and then rotated right by
bits before forming the page-walker equivalents of EntryLo0 and EntryLo1 values. These operations are used to
remove the Software-only bits and placing the RI and XI protection bits in the proper bit location before writing the
TLB. If the RI and XI bits are implemented and enabled, the HW Page Walker feature requires the RI bit to be placed
right of the G bit in the PTE memory format. Similarly, it is required that the XI bit to be placed right of the RI bit in
the PTE memory format.

Note that whether the mode of operation is 32b-compatible or native 64b, the RI/XI bits will always end up in bits
63:62 of the rotated PTE because the rotate is always 64b in the page walker. This is in contrast to mtc0/mfc0 instruc-
tions used by the software refill handler which xplicitly shift bits 31:30 to 63:62 if the move is to/from EntryLo0/1.
Refer to instruction descriptions for MTC0 and MFC0 in Volume II for more information.

Note that the bit position of PTEvld is not fi ed at 0. It can be programmed by the PWCtlPsn field. If non-leaf PT
entries are available, there will already be a bit used by the software TLB handler to distinguish non-leaf PTE entries
from directory pointers. Normally, the PTEvld bit is configured to point to that soft are bit within the PTE.

 Virtual Memory

67MIPS® Architecture For Programmers Volume III: The MIPS64® and microMIPS64™ Privileged Resource Architecture, Re-
vision 5.04

A possible programming error to avoid is placing the PTEvld bit within the Directory Pointer field, as a y of those
address bits may be set and thus not appropriate to be used to distinguish between a Directory Pointer or a non-leaf
PTE.

The following figure show an example of 8-byte pointers or PTE entries. The 8-byte width is configure by the com-
bination of PWSizePS=1 and PWSIzePTEW=0. In this example, 8 bits are used for Software-only flags. The foll wing
figures assume a PTE format based o PWCtlPsn=0, PWFieldPTEI =10 and a Base Page Size of 4k for simplicity. In
this example, the

Figure 4.9 8-byte Leaf PTE

Figure 4.10 8-Byte Non-leaf PTE Options

After shifting the software bits (7..0) out (shifting in zeros at the most significan bit) and rotating the RI and XI field
into bits 63:62, the PTE matches the EntryLo register format. In the non-Leaf PTE, the 4-bits which are just left of the
C field are reser ed for future features.

Figure 4.11 8-Byte Rotated PTE Formats

Leaf PTEs always occur in pairs (EntryLo0 and EntryLo1). However, non-leaf PTEs (ones which occur in the upper
directories) can occur either in pairs (if Dual Page method is enabled) or occur with just one entry (Adjacent Page
method).

63..40 39 16 15..13 12 11 10 9 8 7..0 Comment

PFNX PFN C D V G RI XI S/W Use Page Size=Base,
PTE format in memory

63..40 39..20 19..16 15..13 12 11 10 9 8 7..0 Comment

PFNX PFN Rsvd
(must be 0) C D V G RI XI S/W Use Page Size=HgPgSz.

PTE format in memory

63..40 39..20 19..16 15..13 12 11 10 9 8 7..1 0 Comment

PFNX PFN Rsvd
(must be 0) C D V G RI XI

UnUsed
by

Hardware

PTEvld
=1

Page Size=HgPgSz.
PTE format interpreted by HW Page

Walker

63 12 11 1

Dir Pointer 63..12 0 PTEvld
=0

Directory Ptr format interpreted by
HW Page Walker

Comment 63 62 61..53 52..30 29 6 5..3 2 1 0 Comment

Leaf PTE RI XI FILL PFNX PFN C D V G Page Size=Base

63 62 61..53 52..30 29..10 9..6 5..3 2 1 0

Non-leaf PTE RI XI FILL PFNX PFN Rsvd
(must be 0)

C D V G Page Size=HgPgSz

4.14 Hardware Page Table Walker

MIPS® Architecture For Programmers Volume III: The MIPS64® and microMIPS64™ Privileged Resource Architecture, Revi-
sion 5.04 68

For the Adjacent Page method, the single non-leaf PTE represent both EntryLo0 and EntryLo1 values. When the
walker populates the EntryLo registers for a PTE in a directory, the least significant bit ab ve the page size is 0 for
EntryLo0 and 1 for EntryLo1. That is, EntryLo0 and EntryLo1 represent adjacent physical pages.

For the Dual Page method, the two PTEs are read from the directory level by the Hardware Page Walker.

For Huge Page handling, the size of the Huge Page is inferred from the directory level in which the Huge Page
resides. For the Adjacent Page Method, the size of each individual PTE in EntryLo0 and EntryLo1 as synthesized from
the single Huge Page is always half the inferred size.

If the inferred page size is 2 x power-of-4, then the Adjacent Page Method is used.

If the inferred page size is a power-of-4, then the Dual Page Method is used (if the Dual Page Method is imple-
mented). If the Dual Page method is implemented (PWCtlDPH=1), it is implementation-specific whether the PTEVl
bit is checked for the second PTE when it is read from memory for writing the second TLB page. The recommended
behavior is to check this second PTEVld bit and if it is not set, a Machine Check exception is triggered. The
PageGrainMCCause register field is used to di ferentiate between different types of Machine Check exceptions.

If the the inferred Huge Page size is power-of-4, and the Dual Page Methods is not implemented, it is implementa-
tion-specific whether a Machine Check is reported

An example of Huge Page handling follows. It assumes a leaf PTE size of 4KB.

• PMD Huge Page = 2^9 (PWSizePTW) * 2^12 (PWFieldPTI) = 2^21 = 2MB. Each EntryLo0/1 page is 1MB, which
is a power-of-4 and use the Adjacent Page method.

• PUD Huge Page = 2^10 (PWSizeMDW) * 2^9 (PWSizePTW) * 2^12 (PWFieldPTI) = 2^31 = 2GB. Each EntryLo0/1
page is 1GB, which is a power-of-4 and would use the Adjacent Page method. Note that the index into PMD has
been extended to 10 bits from 9 bits. Each PMD table thus has 1K entries instead of the typical 512 entries.

See also:

• Section 9.16, "PWBase Register (CP0 Register 5, Select 5)" on page 165

• Section 9.17, "PWField Register (CP0 Register 5, Select 6)" on page 165

• Section 9.18, "PWSize Register (CP0 Register 5, Select 7)" on page 168

• Section 9.20, "PWCtl Register (CP0 Register 6, Select 6)" on page 177

4.14.3 Hardware page table walking process

The hardware page table walking process is described in pseudocode as follows:

/* Perform hardware page table walk
*
* Memory accesses are performed using the KERNEL privilege level.
* Synchronous exceptions detected on memory accesses cause a silent exit
* from page table walking, resulting in a TLB or XTLB Refill exception.
*
* Implementations are not required to support page table walk memory
* accesses from mapped memory regions. When an unsupported access is
* attempted, a silent exit is taken, resulting in a TLB or XTLB Refill exception.

 Virtual Memory

69MIPS® Architecture For Programmers Volume III: The MIPS64® and microMIPS64™ Privileged Resource Architecture, Re-
vision 5.04

*
* Note that if an exception is caused by AddressTranslation or LoadMemory
* functions, the exception is not taken, a silent exit is taken,
* resulting in a TLB or XTLB Refill exception.
*
* For readability, this pseudo-code does not deal with PTEs of different widths.
* In reality, implementations will have to deal with the different PTE
* and directory pointer widths.

*/
subroutine PageTableWalkRefill(vAddr) :

if (Config3PW = 0) then
return(0) # walker is unimplemented

if (PWCtlPWEn=0) then
return (0) # walker is disabled

if !((PWCtlPWDirExt=1 & PWSizeBDW>0)|PWSizeGDW>0|PWSizeUDW>0|PWSizeMDW>0) then
return (0) # no structure to walk

if !(PWSizePS=1 & (PWCtlXK=1 | PWCtlXs=1 | PWCtlXU=1)) then
return (0) # no segment to map

Initial values
found ← 0

encMask ← 0
HugePage ← False
HgPgBDhit ← False
HgPgGDhit ← False
HgPgUDhit ← false
HgPgMDhit ← false

Native pointer size
if (PWSizePS=0) then

NativeShift ← 2
DSize ← 32

else
NativeShift ← 3
DSize ← 64

endif

Indices computed from faulting address

if (PWCtlPWDirExt = 1) then
Bindex ← {(vAddr>>PWFieldBDI) and ((1<<PWSizeBDW)-1)}
Gindex ← {(vAddr>>PWFieldGDI) and ((1<<PWSizeGDW)-1)}

else
tempPointer ← {(vAddr>>PWFieldGDI) and ((1<<PWSizeGDW)-1)}

switch ({PWCtlXK,PWCtlXS,PWCtlXU})
case 001 # xuseg only

if (vAddr[63] or vAddr[62])=1 then
return (0)

endif
Gindex ← tempPointer

4.14 Hardware Page Table Walker

MIPS® Architecture For Programmers Volume III: The MIPS64® and microMIPS64™ Privileged Resource Architecture, Revi-
sion 5.04 70

case 011 # xuseg & xsseg
if (vAddr[63] and vAddr[62])=1 then

return (0)
endif
Gindex ← {(vAddr>>62) & 1, tempPointer}

case 101 # xuseg & xkseg
if (~vAddr[63] and vAddr[62])=1 then

return (0)
endif
Gindex ← {(vAddr>>63) & 1, tempPointer}

case 111 # xuseg, xsseg, xkseg
Gindex ← {(vAddr>>62) and 3, tempPointer}

default
return (0)

end switch
endif
Uindex ← (vAddr >> PWFieldUDI) and((1<<PWSizeUDW)-1)
Mindex ← (vAddr >> PWFieldMDI) and ((1<<PWSizeMDW)-1)
PTindex ← (vAddr >> PWFieldPTI) and((1<<PWSizePTW)-1)

Offsets into tables
Goffset ← Gindex << NativeShift
Uoffset ← Uindex << NativeShift
Moffset ← Mindex << NativeShift
PToffset0 ← (PTindex >> 1) << (NativeShift + PWSizePTEW+1)
PToffset1 ← PToffset0 OR (1 << (NativeShift + PWSizePTEW))

EntryLo0 ← UNPREDICTABLE
EntryLo1 ← UNPREDICTABLE
ContextBadVPN2 ← UNPREDICTABLE
XContextBadVPN2 ← UNPREDICTABLE

Starting address - Page Table Base
vAddr ← PWBase

Base Directory (Optional)
if (PWCtlPWDirExt = 1) then

if (PWSizeBDW > 0) then
Boffset ← Bindex << NativeShift
vAddr ← vAddr or Boffset
(pAddr, CCA) ← AddressTranslation(vAddr, DATA, LOAD, KERNEL)
t ← LoadMemory(CCA, DSize, pAddr, vAddr, DATA)

if (t and (1<<PWCtlPsn) && PWCtlHugepg=1) then # PTEvld is set
HugePage ← true
HgPgBDHit ← true
t ← t >> PWFieldPTEI - 2 // shift entire PTE, SW-only bits->0
t ← ROTRIGHT(t, 2) // 64-bit rotate to place RI/XI bits
w ← (PWFieldBDI)-1
if ((PWFieldBDI and 0x1)=1) // check if odd e.g. 2x power of 4
// generate adjacent page from same PTE for odd TLB page

lsb ← (1<<w)>> 6 // align PA[12] into EntryLo* register bit 6
pw_EntryLo0 ← t and not lsb # lsb=0 even page
pw_EntryLo1 ← t or lsb # lsb=1 odd page

 Virtual Memory

71MIPS® Architecture For Programmers Volume III: The MIPS64® and microMIPS64™ Privileged Resource Architecture, Re-
vision 5.04

elseif (PWCtlDPH = 1)
// Dual Pages - figure out whether even or odd page loaded first

OddPageBit = (1 << PWFieldBDI)
if (vAddr and OddPageBit)

pw_EntryLo1 ← t
else

pw_EntryLo0 ← t
endif

// load second PTE from directory for other TLB page
vAddr2 ← vAddr xor Oddness
(pAddr2, CCA2) ← AddressTranslation(vAddr2, DATA, LOAD, KERNEL)
t ← LoadMemory(CCA2, DSize, pAddr2, vAddr2, DATA)
t ← t >> PWFieldPTEI - 2 // shift entire PTE
t ← ROTRIGHT(t, 2) // 64-bit rotate to place RI/XI bits
if (vAddr and OddPageBit)

pw_EntryLo0 ← t
else

pw_EntryLo1 ← t
endif

else
goto ERROR

endif
goto REFILL

else
vAddr ← t

endif
endif

endif

Global Directory
if (PWSizeGDW > 0) then

vAddr ← vAddr or Goffset
(pAddr, CCA) ← AddressTranslation(vAddr, DATA, LOAD, KERNEL)
t ← LoadMemory(CCA, DSize, pAddr, vAddr, DATA)

if (t and (1<<PWCtlPsn) && PWCtlHugpg=1) then # PTEvld is set
HugePage ← true
HgPgGDHit ← true
t ← t >> PWFieldPTEI - 2 // shift entire PTE
t ← ROTRIGHT(t, 2) // 64-bit rotate to place RI/XI bits
w ← (PWFieldGDI)-1
if ((PWFieldGDI and 0x1)=1) // check if index is odd e.g. 2x power of 4
// generate adjacent page from same PTE for odd TLB page

lsb ← (1<<w)>> 6
pw_EntryLo0 ← t and not lsb # lsb=0 even page; note FILL fields are 0
pw_EntryLo1 ← t or lsb # lsb=1 odd page

elseif (PWCtlDPH = 1)
// Dual Pages - figure out whether even or odd page loaded first

OddPageBit = (1 << PWFieldGDI)
if (vAddr and OddPageBit)

pw_EntryLo1 ← t
else

pw_EntryLo0 ← t
endif

// load second PTE from directory for other TLB page
vAddr2 ← vAddr xor OddPageBit
(pAddr2, CCA2) ← AddressTranslation(vAddr2, DATA, LOAD, KERNEL)
t ← LoadMemory(CCA2, DSize, pAddr2, vAddr2, DATA)

4.14 Hardware Page Table Walker

MIPS® Architecture For Programmers Volume III: The MIPS64® and microMIPS64™ Privileged Resource Architecture, Revi-
sion 5.04 72

t ← t >> PWFieldPTEI - 2 // shift entire PTE
t ← ROTRIGHT(t, 2) // 64-bit rotate to place RI/XI bits
if (vAddr and OddPageBit)

pw_EntryLo0 ← t
else

pw_EntryLo1 ← t
endif

else
goto ERROR

endif
goto REFILL

else
vAddr ← t

endif
endif

Upper directory
if (PWSizeUDW > 0) then

vAddr ← vAddr or Uoffset
(pAddr, CCA) ← AddressTranslation(vAddr, DATA, LOAD, KERNEL)
t ← LoadMemory(CCA, DSize, pAddr, vAddr, DATA)

if (t and (1<<PWCtlPsn) && PWCtlHugpg=1) then# PTEvld is set
HugePage ← true
HgPgUDHit ← true
t ← t >> PWFieldPTEI - 2 // right-shift entire PTE
t ← ROTRIGHT(t, 2) // 64-bit rotate to place RI/XI bits
w ← (PWFIELDUDI)-1
if ((PWFIELDUDI and 0x1)= 0x1) //check if odd e.g. 2x power of 4
// generate adjacent page from same PTE for odd TLB page

lsb ← (1<<w)>> 6 // align PA[12] into EntryLo* register bit 6
pw_EntryLo0 ← t and not lsb # lsb=0 even page; note FILL fields are 0
pw_EntryLo1 ← t or lsb # lsb=1 odd page

elseif (PWCtlDPH = 1)
// Dual Pages - figure out whether even or odd page loaded first

OddPageBit = (1 << PWFIELDUDI)
if (vAddr and OddPageBit)

pw_EntryLo1 ← t
else

pw_EntryLo0 ← t
endif

// load second PTE from directory for odd TLB page
vAddr2 ← vAddr xor OddPageBit
(pAddr2, CCA2) ← AddressTranslation(vAddr2, DATA, LOAD, KERNEL)
t ← LoadMemory(CCA2, DSize, pAddr2, vAddr2, DATA)
t ← t >> PWFieldPTEI - 2 // right-shift entire PTE
t ← ROTRIGHT(t, 2) // 64-bit rotate to place RI/XI bits
if (vAddr and OddPageBit)

pw_EntryLo0 ← t
else

pw_EntryLo1 ← t
endif

else
goto ERROR

endif
goto REFILL

else
vAddr ← t

 Virtual Memory

73MIPS® Architecture For Programmers Volume III: The MIPS64® and microMIPS64™ Privileged Resource Architecture, Re-
vision 5.04

endif
endif

Middle directory
if (PWSizeMDW > 0) then

vAddr ← vAddr OR Moffset
(pAddr, CCA) ← AddressTranslation(vAddr, DATA, LOAD, KERNEL)
t ← LoadMemory(CCA, DSize, pAddr, vAddr, DATA)
if (t and (1<<PWCtlPsn) && PWCtlHugpg=1) then# PTEvld is set

HugePage ← true
HgPgMDHit ← true
t ← t >> PWFieldPTEI - 2 // right-shift entire PTE
t ← ROTRIGHT(t, 2) // 64-bit rotate to place RI/XI bits
pw_EntryLo0 ← t # note FILL fields are 0
w ← (PWFieldMDI)-1
if ((PWFieldMDI and 0x1)= 0x1) // check if odd e.g. 2x power of 4
// generate adjacent page from same PTE for odd TLB page
lsb ← (1<<w)>> 6 // align PA[12] into EntryLo* register bit 6
pw_EntryLo0 ← t and not lsb # lsb=0 even page; note FILL fields are 0
pw_EntryLo1 ← t or lsb # lsb=1 odd page
elseif (PWCtlDPH = 1)
// Dual Pages - figure out whether even or odd page loaded first

OddPageBit = (1 << PWFieldMDI)
if (vAddr and OddPageBit)

pw_EntryLo1 ← t
else

pw_EntryLo0 ← t
endif

// load second PTE from directory for odd TLB page
vAddr2 ← vAddr xor (1 << (NativeShift + PWSizePTEW)
(pAddr2, CCA2) ← AddressTranslation(vAddr2, DATA, LOAD, KERNEL)
t ← LoadMemory(CCA2, DSize, pAddr2, vAddr2, DATA)
t ← t >> PWFieldPTEI - 2 // right-shift entire PTE
t ← ROTRIGHT(t, 2) // 64-bit rotate to place RI/XI bits
if (vAddr and OddPageBit)

pw_EntryLo0 ← t
else

pw_EntryLo1 ← t
endif

else
goto ERROR

endif
goto REFILL

else
vAddr ← t

endif
endif

Leaf Level Page Table - First half of PTE pair
vAddr ← vAddr or PToffset0
(pAddr, CCA) ← AddressTranslation(vAddr, DATA, LOAD, KERNEL)
temp0 ← LoadMemory(CCA, DSize, pAddr, vAddr, DATA)

Leaf Level Page Table - Second half of PTE pair
vAddr ← vAddr or PToffset1
(pAddr, CCA) ← AddressTranslation(vAddr, DATA, LOAD, KERNEL)
temp1 ← LoadMemory(CCA, DSize, pAddr, vAddr, DATA)

4.14 Hardware Page Table Walker

MIPS® Architecture For Programmers Volume III: The MIPS64® and microMIPS64™ Privileged Resource Architecture, Revi-
sion 5.04 74

Load Page Table Entry pair into TLB
temp0 ← temp0 >> PWFieldPTEI - 2 // right-shift entire PTE
pw_EntryLo0 ← ROTRIGHT(temp0, 2) // 64-bit rotate to place RI/XI bits

temp1 ← temp1 >> PWFieldPTEI - 2 // right-shift entire PTE
pw_EntryLo1 ← ROTRIGHT(temp1, 2) // 64-bit rotate to place RI/XI bits

REFILL:
found ← 1
m ← (1<<PWFieldPTI)-1

if (HugePage) then
Non-power-of-4 page size halved to provide power-of-4 page size.
1st step: Halve page size (1<<(w-1))

switch ({HgPgBDHit,HgPgGDHit,HgPgUDHit,HgPgMDHit})
case 1000

m ← (1<<(PWFieldBDI))-1
case 0100

m ← (1<<(PWFieldGDI))-1
case 0010

m ← (1<<(PWFieldUDI))-1
case 0001

m ← (1<<(PWFieldMDI))-1
end switch

endif
2nd step: Normalize mask field to 4KB as smallest base (>>12)
pw_PageMaskMask ← m>>12

The hardware page walker inserts a page into the TLB in a manner
identical to a TLBWR instruction as executed by the software refill handler

pw_EntryHi = (vaddr and not 0xfff)| EntryHiASID
TLBWriteRandom(pw_EntryHi, pw_EntryLo0, pw_EntryLo1, pw_PageMask)
return(found)
If an error/exception condition is detected on a page table
walk memory access, this function exits with found=0.
#
OnError:

return(0)
endsub

If a page is marked invalid, the hardware refill handler will still fill the page into the TLB. Sof are can point to
invalid PTEs to represent regions that are not mapped. When the Software attempts to use the invalid TLB entry, a
TLB invalid exception will be generated.

Chapter 5

MIPS® Architecture For Programmers Volume III: The MIPS64® and microMIPS64™ Privileged Resource Architecture, Revi-
sion 5.04 75

Common Device Memory Map

MIPS processors may include memory-mapped IO devices that are packaged as part of the CPU. An example is the
Fast Debug Channel, which is a UART-like communication device that uses the EJTAG probe pins to move data to
the external world.

The Common Device Memory Map (CDMM) is a region of physical address space that is reserved for mapping IO
device configuration r gisters within a MIPS processor. The CDMM helps aggregate various device mappings into
one area, preventing fragmentation of the memory address space. It also enables the use of access control and mem-
ory address translation mechanisms for these device registers. The CDMM occupies a maximum of 32KB in the
physical address map.

The CMDMM is an optional feature of the architecture. Software detects if CDMM is implemented by reading the
Config3CDMM register field (bit 3)

Two blocks are defined for the CDMM

• CDMMBase - A new Coprocessor 0 register that sets the base physical address of the CDMM

• CDMM Access Control and Device Register Block - The 32KB CDMM region is divided into smaller 64-byte
aligned blocks called ‘Device Register Blocks’ (DRBs). Each block has access control and status information in
access control and status registers (ACSRs), followed by IO device registers.

For implementations that have multiple VPEs, the IO devices and their ACSRs are instantiated once per VPE, but the
CDMMBase register is shared among the VPEs.

Implementations are not required to maintain cache coherence for the CDMM region. For that reason, the memory
mapped registers located within this region must be accessed only using uncached memory transactions. Accessing
these register using a cacheable CCA may result in UNPREDICTABLE behavior.

Each of these blocks are now described in detail.

5.1 CDMMBase Register

The physical base address for the CDMM facility is define by a coprocessor 0 register called CDMMBase, (CP0 reg-
ister 15, select 2). This address must be aligned to a 32KB boundary.

On a 64-bit core with a TLB-based MMU, this region would most likely be mapped to a physical address which can
be accessed through one of the kernel unmapped, uncached virtual address segments (kseg1 or xkphys). User-mode
access could be allowed through a TLB mapping using an uncached coherency.

On cores that use a FMT MMU, the region would most likely be mapped to the lower 512MB and made accessible
via kernel mode. Alternatively, if user-mode access is allowed, this region could be mapped to correspond to the
kuseg physical address segment.

5.2 CDMM - Access Control and Device Register Blocks

MIPS® Architecture For Programmers Volume III: The MIPS64® and microMIPS64™ Privileged Resource Architecture, Revi-
sion 5.04 76

On cores that use a BAT MMU, if only kernel mode access is allowed, the region would be mapped to a physical
address region reachable through kseg1 or kseg2/3 (using uncached coherency). If user mode access is allowed, the
useg BAT entry must use an uncached coherency.

Please refer to Section 9.40 on page 223 for the description of the CDMMBase register.

5.2 CDMM - Access Control and Device Register Blocks

The CDMM is divided into 64-byte aligned segments named ‘Device Register Blocks’ (DRBs), Each device occupies
at least one DRB. If a device needs additional address space, it can occupy multiple contiguous 64-byte blocks, eg.
multiple DRBs which are adjacent in the physical address map. For each device, device type identificatio and access
control information is located in the DRB allocated for the device with the lowest physical address.

Access control information is specified via Access Control and Status Registers’ (ACSRs) that are found at the start
of the DRB allocated for the device with the lowest physical address. The ACSR for a device holds the size of the IO
device, and hence also act as a pointer to the start of the next device and its’ ACSR. ACSRs are only accessible in
kernel mode. The ACSR is followed by the data/control registers for the IO device. Figure 5.1 shows the organization
of the CDMM.

Reading any of the IO device registers in either usermode or supervisor mode when such accesses are not allowed,
results in all zeros being returned. Writing any of the IO device registers in either usermode or supervisor mode when
such accesses are not allowed, results in the write being ignored and the register not being modified. Reading a y of
the ACSR registers while not in kernel mode results in all zeros being returned. Writing any of the ACSR registers
while not in kernel mode results in the write being ignored and the ACSR not being modified

Since the ACSR act as a pointer that can only increment, the devices must be allocated in the memory space in a spe-
cific manne . The first d vice must be located at the address pointed by the CDMMBase register and any subsequent
device is allocated in the next available adjacent DRB.

If the CI bit is set in the CDMMBASE register, the first DRB of the CDMM (at o fset 0x0 from the CDMMBase) is
reserved for implementation specific use

 Common Device Memory Map

77MIPS® Architecture For Programmers Volume III: The MIPS64® and microMIPS64™ Privileged Resource Architecture, Re-
vision 5.04

Figure 5.1 Example Organization of the CDMM

5.2.1 Access Control and Status Registers

The firs DRB of a device has 8 bytes of access control address space allocated to it. These 8 bytes can be considered
to be two 32-bit registers (on a 32-bit or 64-bit core), or a single 64-bit register (on a 64-bit core). In revision 1.00 of
the CDMM, only the lower 32-bits hold access control and status information. The control/status register can be
accessed in kernel mode only. Reading this register while not in kernel mode results in all zeros being returned. Writ-
ing this register while not in kernel mode results in the write being ignored and the register not being modified

Figure 5.2 has the format of an Access Control and Status register (shown as a 64-bit register), and Table 5.1
describes the register fields

Figure 5.2 Access Control and Status Register

63 32 31 24 23 22 21 16 15 12 11 4 3 2 1 0

0 DevType 0 DevSize DevRev 0 Uw Ur Sw Sr

Table 5.1 Access Control and Status Register Field Descriptions

Fields

Description
Read /
Write

Reset
State ComplianceName Bits

DevType 31:24 This field specifies the type of vice. A non-zero value
indicates the type of device. A zero value indicates the
absence of a device.

R Preset Required

CDMMBase

Increasing
Physical Address

ACSR for Device 0

ACSR for Device 1

Device 0 Registers

Device 1 Registers

Device 1 Registers

ACSR for Device 2

Device 2 Registers

ACSR for Device 3

Device 3 Registers

Device 3 Registers

Device 3 Registers

ACSR for Device 4

Device 4 Registers

1 DRB= 64 Bytes

1 DRB= 64 Bytes

1 DRB= 64 Bytes

1 DRB= 64 Bytes

1 DRB= 64 Bytes

1 DRB= 64 Bytes

1 DRB= 64 Bytes

1 DRB= 64 Bytes

5.2 CDMM - Access Control and Device Register Blocks

MIPS® Architecture For Programmers Volume III: The MIPS64® and microMIPS64™ Privileged Resource Architecture, Revi-
sion 5.04 78

DevSize 21:16 This field specifies the number of xtra 64-byte blocks
allocated to this device. A value of 0 indicates that only
one 64-byte block is allocated. This also determines the
location of the next device block. A device is limited to
4KB of memory.

R Preset Required

DevRev 15:12 This field specifies the vision of device. This field i
combined with the DevType field to denote the specif
device revision.

R Preset Required

Uw 3 This bit indicates if user-mode write access to this device
is enabled. A value of 1 indicates that access is enabled. A
value of 0 indicates that access is disabled. An attempt to
write to the device while in user mode with access dis-
abled is ignored.

R/W 0 Required

Ur 2 This bit indicates if user-mode read access to this device is
enabled. A value of 1 indicates that access is enabled. A
value of 0 indicates that access is disabled. An attempt to
read from the device while in user mode with access dis-
abled is ignored.

R/W 0 Required

Sw 1 This bit indicates if supervisor-mode write access to this
device is enabled. A value of 1 indicates that access is
enabled. A value of 0 indicates that access is disabled. An
attempt to write to the device while in supervisor mode
with access disabled is ignored.

R/W 0 Required

Sr 0 This bit indicates if supervisor-mode read access to this
device is enabled. A value of 1 indicates that access is
enabled. A value of 0 indicates that access is disabled. An
attempt to read from the device while in supervisor mode
with access disabled is ignored.

R/W 0 Required

0 63:32, 11:4 Reserved for future use. Ignored on write; returns zero on
read.

R 0 Required

Table 5.1 Access Control and Status Register Field Descriptions

Fields

Description
Read /
Write

Reset
State ComplianceName Bits

 Common Device Memory Map

79MIPS® Architecture For Programmers Volume III: The MIPS64® and microMIPS64™ Privileged Resource Architecture, Re-
vision 5.04

Chapter 6

MIPS® Architecture For Programmers Volume III: The MIPS64® and microMIPS64™ Privileged Resource Architecture, Revi-
sion 5.04 80

Interrupts and Exceptions

Release 2 of the Architecture added the following features related to the processing of Exceptions and Interrupts:

• The addition of the Coprocessor 0 EBase register, which allows the exception vector base address to be modifie
for exceptions that occur when StatusBEV equals 0. The EBase register is required.

• The extension of the Release 1 interrupt control mechanism to include two optional interrupt modes:

• Vectored Interrupt (VI) mode, in which the various sources of interrupts are prioritized by the processor and
each interrupt is vectored directly to a dedicated handler. When combined with GPR shadow registers, intro-
duced in the next chapter, this mode significantly reduces the number of ycles required to process an inter-
rupt.

• External Interrupt Controller (EIC) mode, in which the definition of the coprocessor 0 r gister fields associ
ated with interrupts changes to support an external interrupt controller. This can support many more priori-
tized interrupts, while still providing the ability to vector an interrupt directly to a dedicated handler and take
advantage of the GPR shadow registers.

• The ability to stop the Count register for highly power-sensitive applications in which the Count register is not
used, or for reduced power mode. This change is required.

• The addition of the DI and EI instructions which provide the ability to atomically disable or enable interrupts.
Both instructions are required.

• The addition of the TI and PCI bits in the Cause register to denote pending timer and performance counter inter-
rupts. This change is required.

• The addition of an execution hazard sequence which can be used to clear hazards introduced when software
writes to a coprocessor 0 register which affects the interrupt system state.

6.1 Interrupts

Release 1 of the Architecture included support for two software interrupts, six hardware interrupts, and two special-
purpose interrupts: timer and performance counter. The timer and performance counter interrupts were combined
with hardware interrupt 5 in an implementation-dependent manner. Interrupts were handled either through the gen-
eral exception vector (offset 0x180) or the special interrupt vector (0x200), based on the value of CauseIV. Software
was required to prioritize interrupts as a function of the CauseIP bits in the interrupt handler prologue.

Release 2 of the Architecture adds an upward-compatible extension to the Release 1 interrupt architecture that sup-
ports vectored interrupts. In addition, Release 2 adds a new interrupt mode that supports the use of an external inter-
rupt controller by changing the interrupt architecture.

Although a Non-Maskable Interrupt (NMI) includes “interrupt” in its name, it is more correctly described as an NMI
exception because it does not affect, nor is it controlled by the processor interrupt system.

 Interrupts and Exceptions

81MIPS® Architecture For Programmers Volume III: The MIPS64® and microMIPS64™ Privileged Resource Architecture, Re-
vision 5.04

An interrupt is only taken when all of the following are true:

• A specific request for interrupt service is made, as a function of the interrupt mode, described bel w.

• The IE bit in the Status register is a one.

• The DM bit in the Debug register is a zero (for processors implementing EJTAG)

• The EXL and ERL bits in the Status register are both zero.

Logically, the request for interrupt service is ANDed with the IE bit of the Status register. The final interrupt reques
is then asserted only if both the EXL and ERL bits in the Status register are zero, and the DM bit in the Debug register
is zero, corresponding to a non-exception, non-error, non-debug processing mode, respectively.

6.1.1 Interrupt Modes

An implementation of Release 1 of the Architecture only implements interrupt compatibility mode.

An implementation of Release 2 of the Architecture may implement up to three interrupt modes:

• Interrupt compatibility mode, which acts identically to that in an implementation of Release 1 of the Architec-
ture. This mode is required.

• Vectored Interrupt (VI) mode, which adds the ability to prioritize and vector interrupts to a handler dedicated to
that interrupt, and to assign a GPR shadow set for use during interrupt processing. This mode is optional and its
presence is denoted by the VInt bit in the Config3 register.

• External Interrupt Controller (EIC) mode, which redefine the way in which interrupts are handled to provide full
support for an external interrupt controller handling prioritization and vectoring of interrupts. This mode is
optional and its presence is denoted by the VEIC bit in the Config3 register.

A compatible implementation of Release 2 of the Architecture must implement interrupt compatibility mode, and
may optionally implement one or both vectored interrupt modes. Inclusion of the optional modes may be done selec-
tively in the implementation of the processor, or they may always be implemented and be dynamically enabled based
on coprocessor 0 control bits. The reset state of the processor is to interrupt compatibility mode such that an imple-
mentation of Release 2 of the Architecture is fully compatible with implementations of Release 1 of the Architecture.

Table 6.1 shows the current interrupt mode of the processor as a function of the coprocessor 0 register field that can
affect the mode.

Table 6.1 Interrupt Modes

S
ta

tu
s B

E
V

C
au

se
IV

In
tC

tl
V

S

C
o

n
fi

g
3 V

IN
T

C
o

n
fi

g
3 V

E
IC

Interrupt Mode

1 x x x x Compatibility

x 0 x x x Compatibility

x x =0 x x Compatibility

0 1 ≠0 1 0 Vectored Interrupt

0 1 ≠0 x 1 External Interrupt Controller

6.1 Interrupts

MIPS® Architecture For Programmers Volume III: The MIPS64® and microMIPS64™ Privileged Resource Architecture, Revi-
sion 5.04 82

6.1.1.1 Interrupt Compatibility Mode

This is the only interrupt mode for a Release 1 processor and the default interrupt mode for a Release 2 processor.
This mode is entered when a Reset exception occurs. In this mode, interrupts are non-vectored and dispatched though
exception vector offset 0x180 (if CauseIV = 0) or vector offset 0x200 (if CauseIV = 1). This mode is in effect if any of
the following conditions are true:

• CauseIV = 0

• StatusBEV = 1

• IntCtlVS = 0, which would be the case if vectored interrupts are not implemented, or have been disabled.

The current interrupt requests are visible via the IP fiel in the Cause register on any read of the register (not just after
an interrupt exception has occurred). Note that an interrupt request may be deasserted between the time the processor
starts the interrupt exception and the time that the software interrupt handler runs. The software interrupt handler
must be prepared to handle this condition by simply returning from the interrupt via ERET. A request for interrupt
service is generated as shown in Table 6.2.

A typical software handler for interrupt compatibility mode might look as follows:

/*
 * Assumptions:
 * - CauseIV = 1 (if it were zero, the interrupt exception would have to

0 1 ≠0 0 0 Not Allowed - IntCtlVS is zero if neither Vectored Inter-
rupt nor External Interrupt Controller mode are imple-
mented.

“x” denotes don’t care

Table 6.2 Request for Interrupt Service in Interrupt Compatibility Mode

Interrupt Type
Interrupt
Source

Interrupt Request
Calculated From

Hardware Interrupt, Timer Interrupt, or Perfor-
mance Counter Interrupt

HW5 CauseIP7 and StatusIM7

Hardware Interrupt HW4 CauseIP6 and StatusIM6

HW3 CauseIP5 and StatusIM5

HW2 CauseIP4 and StatusIM4

HW1 CauseIP3 and StatusIM3

HW0 CauseIP2 and StatusIM2

Software Interrupt SW1 CauseIP1 and StatusIM1

SW0 CauseIP0 and StatusIM0

Table 6.1 Interrupt Modes

S
ta

tu
s B

E
V

C
au

se
IV

In
tC

tl
V

S

C
o

n
fi

g
3 V

IN
T

C
o

n
fi

g
3 V

E
IC

Interrupt Mode

 Interrupts and Exceptions

83MIPS® Architecture For Programmers Volume III: The MIPS64® and microMIPS64™ Privileged Resource Architecture, Re-
vision 5.04

 * be isolated from the general exception vector before getting
 * here)
 * - GPRs k0 and k1 are available (no shadow register switches invoked in
 * compatibility mode)
 * - The software priority is IP7..IP0 (HW5..HW0, SW1..SW0)
 *
 * Location: Offset 0x200 from exception base
 */

IVexception:
mfc0 k0, C0_Cause /* Read Cause register for IP bits */
mfc0 k1, C0_Status /* and Status register for IM bits */
andi k0, k0, M_CauseIM /* Keep only IP bits from Cause */
and k0, k0, k1 /* and mask with IM bits */
beq k0, zero, Dismiss /* no bits set - spurious interrupt */
clz k0, k0 /* Find first bit set, IP7..IP0; k0 = 16..23 */
xori k0, k0, 0x17 /* 16..23 => 7..0 */
sll k0, k0, VS /* Shift to emulate software IntCtlVS */
la k1, VectorBase /* Get base of 8 interrupt vectors */
addu k0, k0, k1 /* Compute target from base and offset */
jr k0 /* Jump to specific exception routine */
nop

/*
 * Each interrupt processing routine processes a specific interrupt, analogous
 * to those reached in VI or EIC interrupt mode. Since each processing routine
 * is dedicated to a particular interrupt line, it has the context to know
 * which line was asserted. Each processing routine may need to look further
 * to determine the actual source of the interrupt if multiple interrupt requests
 * are ORed together on a single IP line. Once that task is performed, the
 * interrupt may be processed in one of two ways:
 *
 * - Completely at interrupt level (e.g., a simply UART interrupt). The
 * SimpleInterrupt routine below is an example of this type.
 * - By saving sufficient state and re-enabling other interrupts. In this
 * case the software model determines which interrupts are disabled during
 * the processing of this interrupt. Typically, this is either the single
 * StatusIM bit that corresponds to the interrupt being processed, or some
 * collection of other StatusIM bits so that “lower” priority interrupts are
 * also disabled. The NestedInterrupt routine below is an example of this type.
 */

SimpleInterrupt:
/*
 * Process the device interrupt here and clear the interupt request
 * at the device. In order to do this, some registers may need to be
 * saved and restored. The coprocessor 0 state is such that an ERET
 * will simply return to the interrupted code.
 */

eret /* Return to interrupted code */

NestedException:
/*
 * Nested exceptions typically require saving the EPC and Status registers,
 * any GPRs that may be modified by the nested exception routine, disabling
 * the appropriate IM bits in Status to prevent an interrupt loop, putting
 * the processor in kernel mode, and re-enabling interrupts. The sample code
 * below cannot cover all nuances of this processing and is intended only

6.1 Interrupts

MIPS® Architecture For Programmers Volume III: The MIPS64® and microMIPS64™ Privileged Resource Architecture, Revi-
sion 5.04 84

 * to demonstrate the concepts.
 */

/* Save GPRs here, and setup software context */
dmfc0 k0, C0_EPC /* Get restart address */
sd k0, EPCSave /* Save in memory */
mfc0 k0, C0_Status /* Get Status value */
sw k0, StatusSave /* Save in memory */
li k1, ~IMbitsToClear /* Get Im bits to clear for this interrupt */

/* this must include at least the IM bit */
/* for the current interrupt, and may include */
/* others */

and k0, k0, k1 /* Clear bits in copy of Status */
ins k0, zero, S_StatusEXL, (W_StatusKSU+W_StatusERL+W_StatusEXL)

/* Clear KSU, ERL, EXL bits in k0 */
mtc0 k0, C0_Status /* Modify mask, switch to kernel mode, */

/* re-enable interrupts */

/*
 * Process interrupt here, including clearing device interrupt.
 * In some environments this may be done with a thread running in
 * kernel or user mode. Such an environment is well beyond the scope of
 * this example.
 */

/*
 * To complete interrupt processing, the saved values must be restored
 * and the original interrupted code restarted.
 */

di /* Disable interrupts - may not be required */
lw k0, StatusSave /* Get saved Status (including EXL set) */
ld k1, EPCSave /* and EPC */
mtc0 k0, C0_Status /* Restore the original value */
dmtc0 k1, C0_EPC /* and EPC */
/* Restore GPRs and software state */
eret /* Dismiss the interrupt */

6.1.1.2 Vectored Interrupt Mode

Vectored Interrupt mode builds on the interrupt compatibility mode by adding a priority encoder to prioritize pending
interrupts and to generate a vector with which each interrupt can be directed to a dedicated handler routine. This
mode also allows each interrupt to be mapped to a GPR shadow set for use by the interrupt handler. Vectored Inter-
rupt mode is in effect if all of the following conditions are true:

• Config3VInt = 1

• Config3VEIC = 0

• IntCtlVS ≠ 0

• CauseIV = 1

• StatusBEV = 0

 Interrupts and Exceptions

85MIPS® Architecture For Programmers Volume III: The MIPS64® and microMIPS64™ Privileged Resource Architecture, Re-
vision 5.04

In VI interrupt mode, the six hardware interrupts are interpreted as individual hardware interrupt requests. The timer
and performance counter interrupts are combined in an implementation-dependent way with the hardware interrupts
(with the interrupt with which they are combined indicated by IntCtlIPTI and IntCtlIPPCI, respectively) to provide the
appropriate relative priority of these interrupts with that of the hardware interrupts. The processor interrupt logic
ANDs each of the CauseIP bits with the corresponding StatusIM bits. If any of these values is 1, and if interrupts are
enabled (StatusIE = 1, StatusEXL = 0, and StatusERL = 0), an interrupt is signaled and a priority encoder scans the val-
ues in the order shown in Table 6.3.

The priority order places a relative priority on each hardware interrupt and places the software interrupts at a priority
lower than all hardware interrupts. When the priority encoder finds the highest priority pending interrupt, it output
an encoded vector number that is used in the calculation of the handler for that interrupt, as described below. This is
shown pictorially in Figure 6.1.

Table 6.3 Relative Interrupt Priority for Vectored Interrupt Mode

Relative
Priority

Interrupt
Type

Interrupt
Source

Interrupt Request
Calculated From

Vector Number
Generated by

Priority Encoder

Highest Priority Hardware HW5 CauseIP7 and StatusIM7 7

HW4 CauseIP6 and StatusIM6 6

HW3 CauseIP5 and StatusIM5 5

HW2 CauseIP4 and StatusIM4 4

HW1 CauseIP3 and StatusIM3 3

HW0 CauseIP2 and StatusIM2 2

Software SW1 CauseIP1 and StatusIM1 1

Lowest Priority SW0 CauseIP0 and StatusIM0 0

 Interrupts and Exceptions

87MIPS® Architecture For Programmers Volume III: The MIPS64® and microMIPS64™ Privileged Resource Architecture, Re-
vision 5.04

sw k0, StatusSave /* Save in memory */
mfc0 k0, C0_SRSCtl /* Save SRSCtl if changing shadow sets */
sw k0, SRSCtlSave
li k1, ~IMbitsToClear /* Get Im bits to clear for this interrupt */

/* this must include at least the IM bit */
/* for the current interrupt, and may include */
/* others */

and k0, k0, k1 /* Clear bits in copy of Status */
/* If switching shadow sets, write new value to SRSCtlPSS here */
ins k0, zero, S_StatusEXL, (W_StatusKSU+W_StatusERL+W_StatusEXL)

/* Clear KSU, ERL, EXL bits in k0 */
mtc0 k0, C0_Status /* Modify mask, switch to kernel mode, */

/* re-enable interrupts */
/*
 * If switching shadow sets, clear only KSU above, write target
 * address to EPC, and do execute an eret to clear EXL, switch
 * shadow sets, and jump to routine
 */

/* Process interrupt here, including clearing device interrupt */

/*
 * To complete interrupt processing, the saved values must be restored
 * and the original interrupted code restarted.
 */

di /* Disable interrupts - may not be required */
lw k0, StatusSave /* Get saved Status (including EXL set) */
ld k1, EPCSave /* and EPC */
mtc0 k0, C0_Status /* Restore the original value */
lw k0, SRSCtlSave /* Get saved SRSCtl */
dmtc0 k1, C0_EPC /* and EPC */
mtc0 k0, C0_SRSCtl /* Restore shadow sets */
ehb /* Clear hazard */
eret /* Dismiss the interrupt */

6.1.1.3 External Interrupt Controller Mode

External Interrupt Controller Mode redefines the ay that the processor interrupt logic is configured to pr vide sup-
port for an external interrupt controller. The interrupt controller is responsible for prioritizing all interrupts, including
hardware, software, timer, and performance counter interrupts, and directly supplying to the processor the vector
number (and optionally the priority level) of the highest priority interrupt. EIC interrupt mode is in effect if all of the
following conditions are true:

• Config3VEIC = 1

• IntCtlVS ≠ 0

• CauseIV = 1

• StatusBEV = 0

In EIC interrupt mode, the processor sends the state of the software interrupt requests (CauseIP1..IP0), the timer inter-
rupt request (CauseTI), and the performance counter interrupt request (CausePCI) to the external interrupt controller,
where it prioritizes these interrupts in a system-dependent way with other hardware interrupts. The interrupt control-

6.1 Interrupts

MIPS® Architecture For Programmers Volume III: The MIPS64® and microMIPS64™ Privileged Resource Architecture, Revi-
sion 5.04 88

ler can be a hard-wired logic block, or it can be configurable based on control and status r gisters. This allows the
interrupt controller to be more specific or more general as a function of the system e vironment and needs.

The external interrupt controller prioritizes its interrupt requests and produces the priority level and the vector num-
ber of the highest priority interrupt to be serviced. The priority level, called the Requested Interrupt Priority Level
(RIPL), is a 6-bit encoded value in the range 0..63, inclusive. A value of 0 indicates that no interrupt requests are
pending. The values 1..63 represent the lowest (1) to highest (63) RIPL for the interrupt to be serviced. The interrupt
controller passes this value on the 6 hardware interrupt lines, which are treated as an encoded value in EIC interrupt
mode. There are several implementation options available for the vector offset:

1. The first option is to treat the RIPL alue as the vector number for the processor.

2. The second option is to send a separate vector number along with the RIPL to the processor.

3. A third option is to send an entire vector offset along with the RIPL to the processor.

StatusIPL (which overlays StatusIM7..IM2) is interpreted as the Interrupt Priority Level (IPL) at which the processor is
currently operating (with a value of zero indicating that no interrupt is currently being serviced). When the interrupt
controller requests service for an interrupt, the processor compares RIPL with StatusIPL to determine if the requested
interrupt has higher priority than the current IPL. If RIPL is strictly greater than StatusIPL, and interrupts are enabled
(StatusIE = 1, StatusEXL = 0, and StatusERL = 0) an interrupt request is signaled to the pipeline. When the processor
starts the interrupt exception, it loads RIPL into CauseRIPL (which overlays CauseIP7..IP2) and signals the external
interrupt controller to notify it that the request is being serviced. Because CauseRIPL is only loaded by the processor
when an interrupt exception is signaled, it is available to software during interrupt processing. The vector number that
the EIC passes into the core is combined with the IntCtlVS to determine where the interrupt service routines is located.
The vector number is not stored in any software visible register. Some implementations may choose to use the RIPL
as the vector number, but this is not a requirement.

In EIC interrupt mode, the external interrupt controller is also responsible for supplying the GPR shadow set number
to use when servicing the interrupt. As such, the SRSMap register is not used in this mode, and the mapping of the
vectored interrupt to a GPR shadow set is done by programming (or designing) the interrupt controller to provide the
correct GPR shadow set number when an interrupt is requested. When the processor loads an interrupt request into
CauseRIPL, it also loads the GPR shadow set number into SRSCtlEICSS, which is copied to SRSCtlCSS when the inter-
rupt is serviced.

The operation of EIC interrupt mode is shown pictorially in Figure 6.2.

6.1 Interrupts

MIPS® Architecture For Programmers Volume III: The MIPS64® and microMIPS64™ Privileged Resource Architecture, Revi-
sion 5.04 90

sw k0, StatusSave /* Save in memory */
ins k0, k1, S_StatusIPL, 6 /* Set IPL to RIPL in copy of Status */
mfc0 k1, C0_SRSCtl /* Save SRSCtl if changing shadow sets */
sw k1, SRSCtlSave
/* If switching shadow sets, write new value to SRSCtlPSS here */
ins k0, zero, S_StatusEXL, (W_StatusKSU+W_StatusERL+W_StatusEXL)

/* Clear KSU, ERL, EXL bits in k0 */
mtc0 k0, C0_Status /* Modify IPL, switch to kernel mode, */

/* re-enable interrupts */
/*
 * If switching shadow sets, clear only KSU above, write target
 * address to EPC, and do execute an eret to clear EXL, switch
 * shadow sets, and jump to routine
 */

/* Process interrupt here, including clearing device interrupt */

/*
 * The interrupt completion code is identical to that shown for VI mode above.
 */

6.1.2 Generation of Exception Vector Offsets for Vectored Interrupts

For vectored interrupts (in either VI or EIC interrupt mode - options 1 & 2), a vector number is produced by the inter-
rupt control logic. This number is combined with IntCtlVS to create the interrupt offset, which is added to 0x200 to cre-
ate the exception vector offset. For VI interrupt mode, the vector number is in the range 0..7, inclusive. For EIC
interrupt mode, the vector number is in the range 1..63, inclusive (0 being the encoding for “no interrupt”). The
IntCtlVS field specifies the spacing between ector locations. If this value is zero (the default reset state), the vector
spacing is zero and the processor reverts to Interrupt Compatibility Mode. A non-zero value enables vectored inter-
rupts, and Table 6.4 shows the exception vector offset for a representative subset of the vector numbers and values of
the IntCtlVS field

Table 6.4 Exception Vector Offsets for Vectored Interrupts

Vector Number

Value of IntCtlVS Field

0b00001 0b00010 0b00100 0b01000 0b10000

0 0x0200 0x0200 0x0200 0x0200 0x0200

1 0x0220 0x0240 0x0280 0x0300 0x0400

2 0x0240 0x0280 0x0300 0x0400 0x0600

3 0x0260 0x02C0 0x0380 0x0500 0x0800

4 0x0280 0x0300 0x0400 0x0600 0x0A00

5 0x02A0 0x0340 0x0480 0x0700 0x0C00

6 0x02C0 0x0380 0x0500 0x0800 0x0E00

7 0x02E0 0x03C0 0x0580 0x0900 0x1000

•
•
•

61 0x09A0 0x1140 0x2080 0x3F00 0x7C00

62 0x09C0 0x1180 0x2100 0x4000 0x7E00

63 0x09E0 0x11C0 0x2180 0x4100 0x8000

 Interrupts and Exceptions

91MIPS® Architecture For Programmers Volume III: The MIPS64® and microMIPS64™ Privileged Resource Architecture, Re-
vision 5.04

The general equation for the exception vector offset for a vectored interrupt is:

vectorOffset ← 0x200 + (vectorNumber × (IntCtlVS || 0b00000))

6.1.2.1 Software Hazards and the Interrupt System

Software writes to certain coprocessor 0 register fields may change the conditions under which an interrupt is ta en.
This creates a coprocessor 0 (CP0) hazard, as described in the chapter “CP0 Hazards” on page 116. In Release 1 of
the Architecture, there was no architecturally-defined method for bounding the number of instructions which ould
be executed after the instruction which caused the interrupt state change and before the change to the interrupt state
was seen. In Release 2 of the Architecture, the EHB instruction was added, and this instruction can be used by soft-
ware to clear the hazard.

Table 6.5 lists the CP0 register field which can cause a change to the interrupt state (either enabling interrupts which
were previously disabled or disabling interrupts which were previously enabled).

An EHB, executed after one of these fields is modified by the listed instruction, m es the change to the interrupt
state visible no later than the instruction following the EHB.

In the following example, a change to the CauseIM field is made visible by an EHB

mfc0 k0, C0_Status
ins k0, zero, S_StatusIM4, 1 /* Clear bit 4 of the IM field */
mtc0 k0, C0_Status /* Re-write the register */
ehb /* Clear the hazard */
/* Change to the interrupt state is seen no later than this instruction */

Similarly, the effects of an DI instruction are made visible by an EHB:

di /* Disable interrupts */
ehb /* Clear the hazard */
/* Change to the interrupt state is seen no later than this instruction */

6.2 Exceptions

Normal execution of instructions may be interrupted when an exception occurs. Such events can be generated as a by-
product of instruction execution (e.g., an integer overfl w caused by an add instruction or a TLB miss caused by a
load instruction), or by an event not directly related to instruction execution (e.g., an external interrupt). When an
exception occurs, the processor stops processing instructions, saves sufficient state to resume the interrupted instruc
tion stream, enters Kernel Mode, and starts a software exception handler. The saved state and the address of the soft-
ware exception handler are a function of both the type of exception, and the current state of the processor.

Table 6.5 Interrupt State Changes Made Visible by EHB

Instruction(s) CP0 Register Written
CP0 Register Field(s)

Modified

MTC0 Status IM, IPL, ERL, EXL, IE

EI, DI Status IE

MTC0 Cause IP1 0

MTC0 PerfCnt Control IE

MTC0 PerfCnt Counter Event Count

6.2 Exceptions

MIPS® Architecture For Programmers Volume III: The MIPS64® and microMIPS64™ Privileged Resource Architecture, Revi-
sion 5.04 92

6.2.1 Exception Priority

Table 6.6 lists all possible exceptions, and the relative priority of each, highest to lowest.

Table 6.6 Priority of Exceptions

Exception Description Type

Reset The Cold Reset signal was asserted to the processor Asynchronous
ResetSoft Reset The Reset signal was asserted to the processor

Debug Single Step An EJTAG Single Step occurred. Prioritized above other exceptions,
including asynchronous exceptions, so that one can single-step into
interrupt (or other asynchronous) handlers.

Synchronous
Debug

Debug Interrupt An EJTAG interrupt (EjtagBrk or DINT) was asserted. Asynchronous
DebugImprecise Debug Data Break An imprecise EJTAG data break condition was asserted.

Nonmaskable Interrupt (NMI) The NMI signal was asserted to the processor. Asynchronous

Machine Check An internal inconsistency was detected by the processor.

Interrupt An enabled interrupt occurred.

Deferred Watch A watch exception, deferred because EXL was one when the excep-
tion was detected, was asserted after EXL went to zero.

Debug Instruction Break An EJTAG instruction break condition was asserted. Prioritized
above instruction fetch exceptions to allow break on illegal instruc-
tion addresses.

Synchronous
Debug

Watch - Instruction fetch A watch address match was detected on an instruction fetch. Priori-
tized above instruction fetch exceptions to allow watch on illegal
instruction addresses.

Synchronous

Address Error - Instruction fetch A non-word-aligned address was loaded into PC.

TLB/XTLB Refill - Instruction fetc A TLB miss occurred on an instruction fetch.

TLB Invalid - Instruction fetch The valid bit was zero in the TLB entry mapping the address refer-
enced by an instruction fetch.

TLB Execute-Inhibit An instruction fetch matched a valid TLB entry which had the XI bit
set.

Cache Error - Instruction fetch A cache error occurred on an instruction fetch.

Bus Error - Instruction fetch A bus error occurred on an instruction fetch.

SDBBP An EJTAG SDBBP instruction was executed. Synchronous
Debug

Instruction Validity Exceptions An instruction could not be completed because it was not allowed
access to the required resources, or was illegal: Coprocessor Unus-
able, MDMX Unusable, Reserved Instruction. If any two exceptions
occur on the same instruction, the Coprocessor Unusable and
MDMX Unusable Exceptions take priority over the Reserved
Instruction Exception.

Synchronous

Execution Exception An instruction-based exception occurred: Integer overfl w, trap,
system call, breakpoint, floating point, coprocessor 2 xception.

Precise Debug Data Break A precise EJTAG data break on load/store (address match only) or a
data break on store (address+data match) condition was asserted.
Prioritized above data fetch exceptions to allow break on illegal data
addresses.

Synchronous
Debug

 Interrupts and Exceptions

93MIPS® Architecture For Programmers Volume III: The MIPS64® and microMIPS64™ Privileged Resource Architecture, Re-
vision 5.04

The “Type” column of Table 6.7 describes the type of exception. Table 6.8 explains the characteristics of each excep-
tion type.

6.2.2 Exception Vector Locations

The Reset, Soft Reset, and NMI exceptions are always vectored to location 0xFFFF.FFFF.BFC0.0000. EJTAG
Debug exceptions are vectored to location 0xFFFF.FFFF.BFC0.0480, or to location
0xFFFF.FFFF.FF20.0200 if the ProbTrap bit is zero or one, respectively, in the EJTAG_Control_register.

Watch - Data access A watch address match was detected on the address referenced by a
load or store. Prioritized above data fetch exceptions to allow watch
on illegal data addresses.

Synchronous

Address error - Data access An unaligned address, or an address that was inaccessible in the cur-
rent processor mode was referenced, by a load or store instruction

TLB/XTLB Refill - Data acces A TLB miss occurred on a data access

TLB Invalid - Data access The valid bit was zero in the TLB entry mapping the address refer-
enced by a load or store instruction

TLB Read-Inhibit A data read access matched a valid TLB entry whose RI bit is set.

TLB Modified - Data acces The dirty bit was zero in the TLB entry mapping the address refer-
enced by a store instruction

Cache Error - Data access A cache error occurred on a load or store data reference Synchronous
or

Asynchronous
Bus Error - Data access A bus error occurred on a load or store data reference

Table 6.7 Exception Type Characteristics

Exception Type Characteristics

Asynchronous Reset Denotes a reset-type exception that occurs asynchronously to instruction execution.
These exceptions always have the highest priority to guarantee that the processor can
always be placed in a runnable state.

Asynchronous Debug Denotes an EJTAG debug exception that occurs asynchronously to instruction execu-
tion. These exceptions have very high priority with respect to other exceptions because
of the desire to enter Debug Mode, even in the presence of other exceptions, both asyn-
chronous and synchronous.

Asynchronous Denotes any other type of exception that occurs asynchronously to instruction execution.
These exceptions are shown with higher priority than synchronous exceptions mainly for
notational convenience. If one thinks of asynchronous exceptions as occurring between
instructions, they are either the lowest priority relative to the previous instruction, or the
highest priority relative to the next instruction. The ordering of the table above considers
them in the second way.

Synchronous Debug Denotes an EJTAG debug exception that occurs as a result of instruction execution, and
is reported precisely with respect to the instruction that caused the exception. These
exceptions are prioritized above other synchronous exceptions to allow entry to Debug
Mode, even in the presence of other exceptions.

Synchronous Denotes any other exception that occurs as a result of instruction execution, and is
reported precisely with respect to the instruction that caused the exception. These excep-
tions tend to be prioritized below other types of exceptions, but there is a relative priority
of synchronous exceptions with each other.

Table 6.6 Priority of Exceptions

Exception Description Type

6.2 Exceptions

MIPS® Architecture For Programmers Volume III: The MIPS64® and microMIPS64™ Privileged Resource Architecture, Revi-
sion 5.04 94

Addresses for all other exceptions are a combination of a vector offset and a vector base address. In Release 1 of the
architecture, the vector base address was fi ed. In Release 2 of the architecture (and subsequent releases), software is
allowed to specify the vector base address via the EBase register for exceptions that occur when StatusBEV equals 0.
Table 6.8 gives the vector base address as a function of the exception and whether the BEV bit is set in the Status reg-
ister. Table 6.9 gives the offsets from the vector base address as a function of the exception. Note that the IV bit in the
Cause register causes Interrupts to use a dedicated exception vector offset, rather than the general exception vector.
For implementations of Release 2 of the Architecture (and subsequent releases), Table 6.4 gives the offset from the
base address in the case where StatusBEV = 0 and CauseIV = 1. For implementations of Release 1 of the architecture in
which CauseIV = 1, the vector offset is as if IntCtlVS were 0.

Table 6.10 combines these two tables into one that contains all possible vector addresses as a function of the state that
can affect the vector selection. To avoid complexity in the table, the vector address value assumes that the EBase reg-
ister, as implemented in Release 2 devices, is not changed from its reset state and that IntCtlVS is 0.

In Release 2 of the Architecture (and subsequent releases), software must guarantee that EBase15..12 contains zeros in
all bit positions less than or equal to the most significan bit in the vector offset. This situation can only occur when a
vector offset greater than 0xFFF is generated when an interrupt occurs with VI or EIC interrupt mode enabled. The
operation of the processor is UNDEFINED if this condition is not met.

Table 6.8 Exception Vector Base Addresses

Exception

StatusBEV

0 1

Reset, Soft Reset, NMI 0xFFFF.FFFF.BFC0.0000

EJTAG Debug (with ProbTrap = 0 in
the EJTAG_Control_register)

0xFFFF.FFFF.BFC0.0480

EJTAG Debug (with ProbTrap = 1 in
the EJTAG_Control_register)

0xFFFF.FFFF.FF20.0200

Cache Error For Release 1 of the architecture:
0xFFFF.FFFF.A000.0000

For Release 2 of the architecture:
0xFFFF.FFFF || EBase31 30 || 1

|| EBase28 12 || 0x000
Note that EBase31 30 have the
fi ed value 0b10

0xFFFF.FFFF.BFC0.0200

Other For Release 1 of the architecture:
0xFFFF.FFFF.8000.0000

For Release 2 of the architecture:
0xFFFF.FFFF || EBase31 12 ||

0x000
Note that EBase31 30 have the
fi ed value 0b10

0xFFFF.FFFF.BFC0.0200

Table 6.9 Exception Vector Offsets

Exception Vector Offset

TLB Refill EXL = 0 0x000

 Interrupts and Exceptions

95MIPS® Architecture For Programmers Volume III: The MIPS64® and microMIPS64™ Privileged Resource Architecture, Re-
vision 5.04

6.2.3 General Exception Processing

With the exception of Reset, Soft Reset, NMI, cache error, and EJTAG Debug exceptions, which have their own spe-
cial processing as described below, exceptions have the same basic processing fl w:

64-bit XTLB Refill, EXL = 0x080

Cache error 0x100

General Exception 0x180

Interrupt, CauseIV = 1 0x200 (In Release 2 implementa-
tions, this is the base of the vectored
interrupt table when StatusBEV = 0)

Reset, Soft Reset, NMI None (Uses Reset Base Address)

Table 6.10 Exception Vectors

Exception StatusBEV StatusEXL CauseIV

EJTAG
ProbTrap

Vector

For Release 2 Implementations,
assumes that EBase retains its
reset state and that IntCtlVS = 0

Reset, Soft Reset, NMI x x x x 0xFFFF.FFFF.BFC0.0000

EJTAG Debug x x x 0 0xFFFF.FFFF.BFC0.0480

EJTAG Debug x x x 1 0xFFFF.FFFF.FF20.0200

TLB Refil 0 0 x x 0xFFFF.FFFF.8000.0000

XTLB Refil 0 0 x x 0xFFFF.FFFF.8000.0080

TLB Refil 0 1 x x 0xFFFF.FFFF.8000.0180

XTLB Refil 0 1 x x 0xFFFF.FFFF.8000.0180

TLB Refil 1 0 x x 0xFFFF.FFFF.BFC0.0200

XTLB Refil 1 0 x x 0xFFFF.FFFF.BFC0.0280

TLB Refil 1 1 x x 0xFFFF.FFFF.BFC0.0380

XTLB Refil 1 1 x x 0xFFFF.FFFF.BFC0.0380

Cache Error 0 x x x 0xFFFF.FFFF.A000.0100

Cache Error 1 x x x 0xFFFF.FFFF.BFC0.0300

Interrupt 0 0 0 x 0xFFFF.FFFF.8000.0180

Interrupt 0 0 1 x 0xFFFF.FFFF.8000.0200

Interrupt 1 0 0 x 0xFFFF.FFFF.BFC0.0380

Interrupt 1 0 1 x 0xFFFF.FFFF.BFC0.0400

All others 0 x x x 0xFFFF.FFFF.8000.0180

All others 1 x x x 0xFFFF.FFFF.BFC0.0380

‘x’ denotes don’t care

Table 6.9 Exception Vector Offsets

Exception Vector Offset

6.2 Exceptions

MIPS® Architecture For Programmers Volume III: The MIPS64® and microMIPS64™ Privileged Resource Architecture, Revi-
sion 5.04 96

• If the EXL bit in the Status register is zero, the EPC register is loaded with the PC at which execution will be
restarted and the BD bit is set appropriately in the Cause register (see Table 9.42 on page 208). The value loaded
into the EPC register is dependent on whether the processor implements the MIPS16 ASE, and whether the
instruction is in the delay slot of a branch or jump which has delay slots. Table 6.11 shows the value stored in
each of the CP0 PC registers, including EPC. For implementations of Release 2 of the Architecture if StatusBEV

= 0, the CSS field in th SRSCtl register is copied to the PSS field, and the CSS alue is loaded from the appro-
priate source.

If the EXL bit in the Status register is set, the EPC register is not loaded and the BD bit is not changed in the
Cause register. For implementations of Release 2 of the Architecture, the SRSCtl register is not changed.

.

• The CE, and ExcCode fields of th Cause registers are loaded with the values appropriate to the exception. The
CE field is loaded, ut not defined, for a y exception type other than a coprocessor unusable exception.

• The EXL bit is set in the Status register.

• The processor is started at the exception vector.

The value loaded into EPC represents the restart address for the exception and need not be modified by xception
handler software in the normal case. Software need not look at the BD bit in the Cause register unless it wishes to
identify the address of the instruction that actually caused the exception.

Note that individual exception types may load additional information into other registers. This is noted in the descrip-
tion of each exception type below.

Operation:

/* If StatusEXL is 1, all exceptions go through the general exception vector */
/* and neither EPC nor CauseBD nor SRSCtl are modified */
if StatusEXL = 1 then

vectorOffset ← 0x180
else

if InstructionInBranchDelaySlot then
EPC ← restartPC/* PC of branch/jump */
CauseBD ← 1

else
EPC ← restartPC /* PC of instruction */
CauseBD ← 0

endif

Table 6.11 Value Stored in EPC, ErrorEPC, or DEPC on an Exception

MIPS16
Implemented?

In Branch/Jump
Delay Slot? Value stored in EPC/ErrorEPC/DEPC

No No Address of the instruction

No Yes Address of the branch or jump instruction (PC-4)

Yes No Upper 63 bits of the address of the instruction, combined
with the ISA Mode bit

Yes Yes Upper 63 bits of the branch or jump instruction (PC-2 in
the MIPS16 ISA Mode and PC-4 in the 32-bit ISA Mode),
combined with the ISA Mode bit

 Interrupts and Exceptions

97MIPS® Architecture For Programmers Volume III: The MIPS64® and microMIPS64™ Privileged Resource Architecture, Re-
vision 5.04

/* Compute vector offsets as a function of the type of exception */
NewShadowSet ← SRSCtlESS /* Assume exception, Release 2 only */
if ExceptionType = TLBRefill then

vectorOffset ← 0x000
elseif (ExceptionType = XTLBRefill) then

vectorOffset ← 0x080
elseif (ExceptionType = Interrupt) then

if (CauseIV = 0) then
vectorOffset ← 0x180

else
if (StatusBEV = 1) or (IntCtlVS = 0) then

vectorOffset ← 0x200
else

if Config3VEIC = 1 then
if (EIC_option1)

VecNum ← CauseRIPL
elseif (EIC_option2)

VecNum ← EIC_VecNum_Signal
endif
NewShadowSet ← SRSCtlEICSS

else
VecNum ← VIntPriorityEncoder()
NewShadowSet ← SRSMapIPL×4+3..IPL×4

endif
if (EIC_option3)

vectorOffset ← EIC_VectorOffset_Signal
else

vectorOffset ← 0x200 + (VecNum × (IntCtlVS || 0b00000))
endif

endif /* if (StatusBEV = 1) or (IntCtlVS = 0) then */
endif /* if (CauseIV = 0) then */

endif /* elseif (ExceptionType = Interrupt) then */

/* Update the shadow set information for an implementation of */
/* Release 2 of the architecture */
if (ArchitectureRevision ≥ 2) and (SRSCtlHSS > 0) and (StatusBEV = 0) then

SRSCtlPSS ← SRSCtlCSS
SRSCtlCSS ← NewShadowSet

endif
endif /* if StatusEXL = 1 then */

CauseCE ← FaultingCoprocessorNumber
CauseExcCode ← ExceptionType
StatusEXL ← 1

/* Calculate the vector base address */
if StatusBEV = 1 then

vectorBase ← 0xFFFF.FFFF.BFC0.0200
else

if ArchitectureRevision ≥ 2 then
/* The fixed value of EBase31..30 forces the base to be in kseg0 or kseg1 */
vectorBase ← 0xFFFF.FFFF || EBase31..12 || 0x000

else
vectorBase ← 0xFFFF.FFFF.8000.0000

endif
endif

6.2 Exceptions

MIPS® Architecture For Programmers Volume III: The MIPS64® and microMIPS64™ Privileged Resource Architecture, Revi-
sion 5.04 98

/* Exception PC is the sum of vectorBase and vectorOffset. Vector */
/* offsets > 0xFFF (vectored or EIC interrupts only), require */
/* that EBase15..12 have zeros in each bit position less than or */
/* equal to the most significant bit position of the vector offset */
PC ← vectorBase63..30 || (vectorBase29..0 + vectorOffset29..0)

/* No carry between bits 29 and 30 */

6.2.4 EJTAG Debug Exception

An EJTAG Debug Exception occurs when one of a number of EJTAG-related conditions is met. Refer to the EJTAG
Specification for details of this xception.

Entry Vector Used

0xFFFF FFFF BFC0 0480 if the ProbTrap bit is zero in the EJTAG_Control_register; 0xFFFF FFFF FF20
0200 if the ProbTrap bit is one.

6.2.5 Reset Exception

A Reset Exception occurs when the Cold Reset signal is asserted to the processor. This exception is not maskable.
When a Reset Exception occurs, the processor performs a full reset initialization, including aborting state machines,
establishing critical state, and generally placing the processor in a state in which it can execute instructions from
uncached, unmapped address space. On a Reset Exception, only the following registers have defined state

• The Random register is initialized to the number of TLB entries - 1.

• The Wired register is initialized to zero.

• The Config, Config1, Config2, and Config3 registers are initialized with their boot state.

• The RP, BEV, TS, SR, NMI, and ERL fields of th Status register are initialized to a specified state

• Watch register enables and Performance Counter register interrupt enables are cleared.

• The ErrorEPC register is loaded with the restart PC, as described in Table 6.11. Note that this value may or may
not be predictable if the Reset Exception was taken as the result of power being applied to the processor because
PC may not have a valid value in that case. In some implementations, the value loaded into ErrorEPC register
may not be predictable on either a Reset or Soft Reset Exception.

• PC is loaded with 0xFFFF FFFF BFC0 0000.

Cause Register ExcCode Value

None

Additional State Saved

None

Entry Vector Used

Reset (0xFFFF FFFF BFC0 0000)

Operation

Random ← TLBEntries - 1
EntryLo0PFNX ← 0 # Large physical address implemented

 Interrupts and Exceptions

99MIPS® Architecture For Programmers Volume III: The MIPS64® and microMIPS64™ Privileged Resource Architecture, Re-
vision 5.04

EntryLo1PFNX ← 0 # Large physical address implemented
PageMaskMaskX ← 0 # 1KB page support implemented
PageGrainELPA ← 0 # Large physical address implemented
PageGrainESP ← 0 # 1KB page support implemented
Wired ← 0
HWREna ← 0
EntryHiVPN2X ← 0 # 1KB page support implemented
StatusRP ← 0
StatusBEV ← 1
StatusTS ← 0
StatusSR ← 0
StatusNMI ← 0
StatusERL ← 1
IntCtlVS ← 0
SRSCtlHSS ← HighestImplementedShadowSet
SRSCtlESS ← 0
SRSCtlPSS ← 0
SRSCtlCSS ← 0
SRSMap ← 0
CauseDC ← 0
EBaseExceptionBase ← 0
Config ← ConfigurationState
ConfigK0 ← 2 # Suggested - see Config register description
Config1 ← ConfigurationState
Config2 ← ConfigurationState
Config3 ← ConfigurationState
WatchLo[n]I ← 0 # For all implemented Watch registers
WatchLo[n]R ← 0 # For all implemented Watch registers
WatchLo[n]W ← 0 # For all implemented Watch registers
PerfCnt.Control[n]IE ← 0 # For all implemented PerfCnt registers
if InstructionInBranchDelaySlot then

ErrorEPC ← restartPC # PC of branch/jump
else

ErrorEPC ← restartPC # PC of instruction
endif
PC ← 0xFFFF FFFF BFC0 0000

6.2.6 Soft Reset Exception

A Soft Reset Exception occurs when the Reset signal is asserted to the processor. This exception is not maskable.
When a Soft Reset Exception occurs, the processor performs a subset of the full reset initialization. Although a Soft
Reset Exception does not unnecessarily change the state of the processor, it may be forced to do so in order to place
the processor in a state in which it can execute instructions from uncached, unmapped address space. Since bus,
cache, or other operations may be interrupted, portions of the cache, memory, or other processor state may be incon-
sistent.

The primary difference between the Reset and Soft Reset Exceptions is in actual use. The Reset Exception is typically
used to initialize the processor on power-up, while the Soft Reset Exception is typically used to recover from a non-
responsive (hung) processor. The semantic difference is provided to allow boot software to save critical coprocessor
0 or other register state to assist in debugging the potential problem. As such, the processor may reset the same state
when either reset signal is asserted, but the interpretation of any state saved by software may be very different.

In addition to any hardware initialization required, the following state is established on a Soft Reset Exception:

• The RP, BEV, TS, SR, NMI, and ERL fields of th Status register are initialized to a specified state

6.2 Exceptions

MIPS® Architecture For Programmers Volume III: The MIPS64® and microMIPS64™ Privileged Resource Architecture, Revi-
sion 5.04 100

• Watch register enables and Performance Counter register interrupt enables are cleared.

• The ErrorEPC register is loaded with the restart PC, as described in Table 6.11. Note that this value may or may
not be predictable.

• PC is loaded with 0xFFFF FFFF BFC0 0000.

Cause Register ExcCode Value

None

Additional State Saved

None

Entry Vector Used

Reset (0xFFFF FFFF BFC0 0000)

Operation

EntryLo0PFNX ← 0 # Large physical address implemented
EntryLo1PFNX ← 0 # Large physical address implemented
PageMaskMaskX ← 0 # 1KB page support implemented
PageGrainELPA ← 0 # Large physical address implemented
PageGrainESP ← 0 # 1KB page support implemented
EntryHiVPN2X ← 0 # 1KB page support implemented
ConfigK0 ← 2 # Suggested - see Config register description
StatusRP ← 0
StatusBEV ← 1
StatusTS ← 0
StatusSR ← 1
StatusNMI ← 0
StatusERL ← 1
WatchLo[n]I ← 0 # For all implemented Watch registers
WatchLo[n]R ← 0 # For all implemented Watch registers
WatchLo[n]W ← 0 # For all implemented Watch registers
PerfCnt.Control[n]IE ← 0 # For all implemented PerfCnt registers
if InstructionInBranchDelaySlot then

ErrorEPC ← restartPC # PC of branch/jump
else

ErrorEPC ← restartPC # PC of instruction
endif
PC ← 0xFFFF FFFF BFC0 0000

6.2.7 Non Maskable Interrupt (NMI) Exception

A non maskable interrupt exception occurs when the NMI signal is asserted to the processor.

Although described as an interrupt, it is more correctly described as an exception because it is not maskable. An NMI
occurs only at instruction boundaries, so does not do any reset or other hardware initialization. The state of the cache,
memory, and other processor state is consistent and all registers are preserved, with the following exceptions:

• The BEV, TS, SR, NMI, and ERL fields of th Status register are initialized to a specified state

• The ErrorEPC register is loaded with restart PC, as described in Table 6.11.

• PC is loaded with 0xFFFF FFFF BFC0 0000.

 Interrupts and Exceptions

101MIPS® Architecture For Programmers Volume III: The MIPS64® and microMIPS64™ Privileged Resource Architecture, Re-
vision 5.04

Cause Register ExcCode Value

None

Additional State Saved

None

Entry Vector Used

Reset (0xFFFF FFFF BFC0 0000)

Operation

StatusBEV ← 1
StatusTS ← 0
StatusSR ← 0
StatusNMI ← 1
StatusERL ← 1
if InstructionInBranchDelaySlot then

ErrorEPC ← restartPC # PC of branch/jump
else

ErrorEPC ← restartPC # PC of instruction
endif
PC ← 0xFFFF FFFF BFC0 0000

6.2.8 Machine Check Exception

A machine check exception occurs when the processor detects an internal inconsistency.

The following conditions cause a machine check exception:

• Detection of multiple matching entries in the TLB in a TLB-based MMU.If the Hardware Page Table Walker fea-
ture is implemented and the Directory-level Huge page feature is supported and the Dual Page method is also
supported, and if the firs accessed PTE entry has PTEVld bit set and the second accessed PTE entry has PTEVld
bit clear.

Cause Register ExcCode Value

MCheck (See Table 9.43 on page 211)

Additional State Saved

Depends on the condition that caused the exception. See the descriptions above.

If there are multiple causes for the machine check exception, then the PageGrainMCCause register fiel is used to dis-
tinguish which condition caused the exception.

Entry Vector Used

General exception vector (offset 0x180)

6.2.9 Address Error Exception

An address error exception occurs under the following circumstances:

• A load or store doubleword instruction is executed in which the address is not aligned on a doubleword bound-
ary.

6.2 Exceptions

MIPS® Architecture For Programmers Volume III: The MIPS64® and microMIPS64™ Privileged Resource Architecture, Revi-
sion 5.04 102

• An instruction is fetched from an address that is not aligned on a word boundary.

• A load or store word instruction is executed in which the address is not aligned on a word boundary.

• A load or store halfword instruction is executed in which the address is not aligned on a halfword boundary.

• A reference is made to a kernel address space from User Mode or Supervisor Mode.

• A reference is made to a supervisor address space from User Mode.

• A reference is made to a a 64-bit address that is outside the range of the 32-bit Compatibility Address Space
when 64-bit address references are not enabled.

• A reference is made to an undefined or unimplemented 64-bit address when 64-bit address references ar
enabled.

Note that in the case of an instruction fetch that is not aligned on a word boundary, the PC is updated before the con-
dition is detected. Therefore, both EPC and BadVAddr point at the unaligned instruction address.

Cause Register ExcCode Value

AdEL: Reference was a load or an instruction fetch

AdES: Reference was a store

See Table 9.43 on page 211.

Additional State Saved

Entry Vector Used

General exception vector (offset 0x180)

6.2.10 TLB Refill and XTLB Refill Exceptions

A TLB Refill or XTLB Refill xception occurs in a TLB-based MMU when no TLB entry matches a reference to a
mapped address space and the EXL bit is zero in the Status register. Note that this is distinct from the case in which an
entry matches but has the valid bit off, in which case a TLB Invalid exception occurs. Refill xceptions have distinct
exception vector offsets: 0x000 for a 32-bit TLB Refill and 0x080 for a 64-bit xtended TLB (“XTLB”) refill. Th
XTLB refill handler is used when ver a reference is made to an enabled 64-bit address space.

Register State Value

BadVAddr failing address

ContextVPN2 UNPREDICTABLE

XContextVPN2 XContextR UNPREDICTABLE

EntryHiVPN2
EntryHiR

UNPREDICTABLE

EntryLo0 UNPREDICTABLE

EntryLo1 UNPREDICTABLE

 Interrupts and Exceptions

103MIPS® Architecture For Programmers Volume III: The MIPS64® and microMIPS64™ Privileged Resource Architecture, Re-
vision 5.04

Cause Register ExcCode Value

TLBL: Reference was a load or an instruction fetch

TLBS: Reference was a store

See Table 9.43 on page 211.

Additional State Saved

Entry Vector Used

• TLB Refill ector (offset 0x000) if 64-bit addresses are not enabled and StatusEXL = 0 at the time of exception.

• XTLB Refill ector (offset 0x080) if 64-bit addresses are enabled and StatusEXL = 0 at the time of exception.

• General exception vector (offset 0x180) in either case if StatusEXL = 1 at the time of exception

6.2.11 Execute-Inhibit Exception

An Execute-Inhibit exception occurs when the virtual address of an instruction fetch matches a TLB entry whose XI
bit is set. This exception type can only occur if the XI bit is implemented within the TLB and is enabled, this is
denoted by the PageGrainXIE bit.

Register State Value

BadVAddr Failing address

Context If Config3CTXTC bit is set, then the bits of the Context reg-
ister corresponding to the set bits of the VirtualIndex fiel
of the ContextConfig register are loaded with the bits
(starting at bit 31) of the virtual address that missed.

If Config3CTXTC bit is clear, then the BadVPN2 field con
tains VA31 13 of the failing address

XContext If Config3CTXTC bit is set, then the bits of the BadVPN2

field corresponding to the set bits of th VirtualIndex fiel
of the ContextConfig register are loaded with the high-
order bits (starting at SEGBITS-1) of the virtual address
that missed and the R field contains A63 62 of the failing
address.

If Config3CTXTC bit is clear, then the XContext

BadVPN2 field contains ASEGBITS-1 13, and the
XContext R field contains A63 62 of the failing address.

EntryHi The EntryHi VPN2 field contains ASEGBITS-1 13 of the
failing address and the EntryHi R fiel contains VA63 62 of
the failing address; the ASID fiel contains the ASID of the
reference that missed

EntryLo0 UNPREDICTABLE

EntryLo1 UNPREDICTABLE

6.2 Exceptions

MIPS® Architecture For Programmers Volume III: The MIPS64® and microMIPS64™ Privileged Resource Architecture, Revi-
sion 5.04 104

Cause Register ExcCode Value

if PageGrainIEC == 0 TLBL

if PageGrainIEC == 1 TLBXI

See Table 9.43 on page 211.

Additional State Saved

Entry Vector Used

General exception vector (offset 0x180)

6.2.12 Read-Inhibit Exception

An Read-Inhibit exception occurs when the virtual address of a memory load reference matches a TLB entry whose
RI bit is set. This exception type can only occur if the RI bit is implemented within the TLB and is enabled, this is
denoted by the PageGrainRIE bit. MIPS16 PC-relative loads are a special case and are not affected by the RI bit.

Cause Register ExcCode Value

if PageGrainIEC == 0 TLBL

if PageGrainIEC == 1 TLBRI

See Table 9.43 on page 211.

Register State Value

BadVAddr Failing address

Context If Config3CTXTC bit is set, then the bits of the Context reg-
ister corresponding to the set bits of the VirtualIndex fiel
of the ContextConfig register are loaded with the bits
(starting at bit 31) of the virtual address that missed.

If Config3CTXTC bit is clear, then the BadVPN2 field con
tains VA31 13 of the failing address

XContext If Config3CTXTC bit is set, then the bits of the BadVPN2

field corresponding to the set bits of th VirtualIndex fiel
of the ContextConfig register are loaded with the high-
order bits (starting at SEGBITS-1) of the virtual address
that missed and the R field contains A63 62 of the failing
address.

If Config3CTXTC bit is clear, then the XContext

BadVPN2 field contains ASEGBITS-1 13, and the
XContext R field contains A63 62 of the failing address.

EntryHi The EntryHi VPN2 field contains ASEGBITS-1 13 of the
failing address and the EntryHi R fiel contains VA63 62 of
the failing address; the ASID fiel contains the ASID of the
reference that missed

EntryLo0 UNPREDICTABLE

EntryLo1 UNPREDICTABLE

 Interrupts and Exceptions

105MIPS® Architecture For Programmers Volume III: The MIPS64® and microMIPS64™ Privileged Resource Architecture, Re-
vision 5.04

Additional State Saved

Entry Vector Used

General exception vector (offset 0x180)

6.2.13 TLB Invalid Exception

A TLB invalid exception occurs when a TLB entry matches a reference to a mapped address space, but the matched
entry has the valid bit off.

Note that the condition in which no TLB entry matches a reference to a mapped address space and the EXL bit is one
in the Status register is indistinguishable from a TLB Invalid Exception, in the sense that both use the general excep-
tion vector and supply an ExcCode value of TLBL or TLBS. The only way to distinguish these two cases is by prob-
ing the TLB for a matching entry (using TLBP).

If the RI and XI bits are implemented within the TLB and the PageGrainIEC bit is clear, then this exception also
occurs if a valid, matching TLB entry is found with the RI bit set on a memory load reference, or with the XI bit set
on an instruction fetch memory reference. MIPS16 PC-relative loads are a special case and are not affected by the RI
bit.

Cause Register ExcCode Value

TLBL: Reference was a load or an instruction fetch

Register State Value

BadVAddr Failing address

Context If Config3CTXTC bit is set, then the bits of the Context reg-
ister corresponding to the set bits of the VirtualIndex fiel
of the ContextConfig register are loaded with the bits
(starting at bit 31) of the virtual address that missed.

If Config3CTXTC bit is clear, then the BadVPN2 field con
tains VA31 13 of the failing address

XContext If Config3CTXTC bit is set, then the bits of the BadVPN2

field corresponding to the set bits of th VirtualIndex fiel
of the ContextConfig register are loaded with the high-
order bits (starting at SEGBITS-1) of the virtual address
that missed and the R field contains A63 62 of the failing
address.

If Config3CTXTC bit is clear, then the XContext BadVPN2

field contains ASEGBITS-1 13, and the XContext R fiel
contains VA63 62 of the failing address.

EntryHi The EntryHi VPN2 field contains ASEGBITS-1 13 of the
failing address, and the EntryHi R fiel contains VA63 62 of
the failing address; the ASID fiel contains the ASID of the
reference that missed

EntryLo0 UNPREDICTABLE

EntryLo1 UNPREDICTABLE

6.2 Exceptions

MIPS® Architecture For Programmers Volume III: The MIPS64® and microMIPS64™ Privileged Resource Architecture, Revi-
sion 5.04 106

TLBS: Reference was a store

See Table 9.42 on page 208.

Additional State Saved

Entry Vector Used

General exception vector (offset 0x180)

6.2.14 TLB Modified Exception

A TLB modified xception occurs on a store reference to a mapped address when the matching TLB entry is valid,
but the entry’s D bit is zero, indicating that the page is not writable.

Cause Register ExcCode Value

Mod (See Table 9.42 on page 208)

Register State Value

BadVAddr Failing address

Context If Config3CTXTC bit is set, then the bits of the Context reg-
ister corresponding to the set bits of the VirtualIndex fiel
of the ContextConfig register are loaded with the bits
(starting at bit 31) of the virtual address that missed.

If Config3CTXTC bit is clear, then the BadVPN2 field con
tains VA31 13 of the failing address

XContext If Config3CTXTC bit is set, then the bits of the BadVPN2

field corresponding to the set bits of th VirtualIndex fiel
of the ContextConfig register are loaded with the high-
order bits (starting at SEGBITS-1) of the virtual address
that missed and the R field contains A63 62 of the failing
address.

If Config3CTXTC bit is clear, then the XContext BadVPN2

field contains ASEGBITS-1 13, and the XContext R fiel
contains VA63 62 of the failing address.

EntryHi The EntryHi VPN2 field contains ASEGBITS-1 13 of the
failing address and the EntryHi R fiel contains VA63 62 of
the failing address; the ASID fiel contains the ASID of the
reference that missed

EntryLo0 UNPREDICTABLE

EntryLo1 UNPREDICTABLE

 Interrupts and Exceptions

107MIPS® Architecture For Programmers Volume III: The MIPS64® and microMIPS64™ Privileged Resource Architecture, Re-
vision 5.04

Additional State Saved

Entry Vector Used

General exception vector (offset 0x180)

6.2.15 Cache Error Exception

A cache error exception occurs when an instruction or data reference detects a cache tag or data error, or a parity or
ECC error is detected on the system bus when a cache miss occurs. This exception is not maskable. Because the error
was in a cache, the exception vector is to an unmapped, uncached address.

Cause Register ExcCode Value

N/A

Additional State Saved

Register State Value

BadVAddr Failing address

Context If Config3CTXTC bit is set, then the bits of the Context reg-
ister corresponding to the set bits of the VirtualIndex fiel
of the ContextConfig register are loaded with the bits
(starting at bit 31) of the virtual address that missed.

If Config3CTXTC bit is clear, then the BadVPN2 field con
tains VA31 13 of the failing address

XContext If Config3CTXTC bit is set, then the bits of the BadVPN2

field corresponding to the set bits of th VirtualIndex fiel
of the ContextConfig register are loaded with the high-
order bits (starting at SEGBITS-1) of the virtual address
that missed and the R field contains A63 62 of the failing
address.

If Config3CTXTC bit is clear, then the XContext

BadVPN2 field contains ASEGBITS-1 13, and the
XContext R field contains A63 62 of the failing address.

EntryHi The EntryHi VPN2 field contains ASEGBITS-1 13 of the
failing address and the EntryHi R fiel contains VA63 62 of
the failing address; the ASID fiel contains the ASID of the
reference that missed

EntryLo0 UNPREDICTABLE

EntryLo1 UNPREDICTABLE

Register State Value

CacheErr Error state

ErrorEPC Restart PC

6.2 Exceptions

MIPS® Architecture For Programmers Volume III: The MIPS64® and microMIPS64™ Privileged Resource Architecture, Revi-
sion 5.04 108

Entry Vector Used

Cache error vector (offset 0x100)

Operation

CacheErr ← ErrorState
StatusERL ← 1
if InstructionInBranchDelaySlot then

ErrorEPC ← restartPC # PC of branch/jump
else

ErrorEPC ← restartPC # PC of instruction
endif
if StatusBEV = 1 then

PC ← 0xFFFF FFFF BFC0 0200 + 0x100
else

if ArchitectureRevision ≥ 2 then
/* The fixed value of EBase31..30 and bit 29 forced to a 1 puts the */
/* vector in kseg1 */
PC ← 0xFFFF.FFFF || EBase31..30 || 1 || EBase28..12 || 0x100

else
PC ← 0xFFFF FFFF A000 0000 + 0x100

endif
endif

6.2.16 Bus Error Exception

A bus error occurs when an instruction, data, or prefetch access makes a bus request (due to a cache miss or an
uncacheable reference) and that request is terminated in an error. Note that parity errors detected during bus transac-
tions are reported as cache error exceptions, not bus error exceptions.

Cause Register ExcCode Value

IBE: Error on an instruction reference

DBE: Error on a data reference

See Table 9.43 on page 211.

Additional State Saved

None

Entry Vector Used

General exception vector (offset 0x180)

6.2.17 Integer Overflow Exception

An integer overfl w exception occurs when selected integer instructions result in a 2’s complement overfl w.

Cause Register ExcCode Value

Ov (See Table 9.43 on page 211)

Additional State Saved

None

 Interrupts and Exceptions

109MIPS® Architecture For Programmers Volume III: The MIPS64® and microMIPS64™ Privileged Resource Architecture, Re-
vision 5.04

Entry Vector Used

General exception vector (offset 0x180)

6.2.18 Trap Exception

A trap exception occurs when a trap instruction results in a TRUE value.

Cause Register ExcCode Value

Tr (See Table 9.43 on page 211)

Additional State Saved

None

Entry Vector Used

General exception vector (offset 0x180)

6.2.19 System Call Exception

A system call exception occurs when a SYSCALL instruction is executed.

Cause Register ExcCode Value

Sys (See Table 9.42 on page 208)

Additional State Saved

None

Entry Vector Used

General exception vector (offset 0x180)

6.2.20 Breakpoint Exception

A breakpoint exception occurs when a BREAK instruction is executed.

Cause Register ExcCode Value

Bp (See Table 9.43 on page 211)

Additional State Saved

None

Entry Vector Used

General exception vector (offset 0x180)

6.2.21 Reserved Instruction Exception

A Reserved Instruction Exception occurs if any of the following conditions is true:

• An instruction was executed that specifies an encoding of the opcode field that is flagged wit ∗” (reserved),
“β” (higher-order ISA), “⊥” (64-bit) if 64-bit operations are not enabled, or an unimplemented “ε” (Module/
ASE).

6.2 Exceptions

MIPS® Architecture For Programmers Volume III: The MIPS64® and microMIPS64™ Privileged Resource Architecture, Revi-
sion 5.04 110

• An instruction was executed that specifies SPECIAL opcode encoding of the function field that is flagged wi
“∗” (reserved), “β” (higher-order ISA), or “⊥” (64-bit) if 64-bit operations are not enabled.

• An instruction was executed that specifies REGIMM opcode encoding of the rt field that is flagged with ∗”
(reserved).

• An instruction was executed that specifies an unimplemente SPECIAL2 opcode encoding of the function fiel
that is flagged with an unimplemented θ” (partner available), “⊥” (64-bit) if 64-bit operations are not enabled,
or an unimplemented “σ” (EJTAG).

• An instruction was executed that specifies COPz opcode encoding of the rs field that is flagged with ∗”
(reserved), “β” (higher-order ISA), “⊥” (64-bit) if 64-bit operations are not enabled, or an unimplemented “ε”
(Module/ASE), assuming that access to the coprocessor is allowed. If access to the coprocessor is not allowed, a
Coprocessor Unusable Exception occurs instead. For the COP1 opcode, some implementations of previous ISAs
reported this case as a Floating Point Exception, setting the Unimplemented Operation bit in the Cause field o
the FCSR register.

• An instruction was executed that specifie an unimplemented COP0 opcode encoding of the function fiel when
rs is CO that is flagged with ∗” (reserved), or an unimplemented “σ” (EJTAG), assuming that access to copro-
cessor 0 is allowed. If access to the coprocessor is not allowed, a Coprocessor Unusable Exception occurs
instead.

• An instruction was executed that specifies COP1 opcode encoding of the function field when rs is S, D, or
that is flagged with ∗” (reserved), “β” (higher-order ISA), “⊥” (64-bit) if 64-bit operations are not enabled, or
an unimplemented “ε” (Module/ASE), assuming that access to coprocessor 1 is allowed. If access to the copro-
cessor is not allowed, a Coprocessor Unusable Exception occurs instead. Some implementations of previous
ISAs reported this case as a Floating Point Exception, setting the Unimplemented Operation bit in the Cause fiel
of the FCSR register.

• An instruction was executed that specifie a COP1 opcode encoding when rs is L or PS and 64-bit operations are
not enabled, or with a function field encoding that is flagged with ∗” (reserved), “β” (higher-order ISA), or an
unimplemented “ε” (Module/ASE), assuming that access to coprocessor 1 is allowed. If access to the coproces-
sor is not allowed, a Coprocessor Unusable Exception occurs instead. Some implementations of previous ISAs
reported this case as a Floating Point Exception, setting the Unimplemented Operation bit in the Cause field o
the FCSR register.

• An instruction was executed that specifies COP1X opcode encoding of the function field that is flagged wi
“∗” (reserved), or any execution of the COP1X opcode when 64-bit operations are not enabled, assuming that
access to coprocessor 1 is allowed. If access to the coprocessor is not allowed, a Coprocessor Unusable Excep-
tion occurs instead. Some implementations of previous ISAs reported this case as a Floating Point Exception,
setting the Unimplemented Operation bit in the Cause field of th FCSR register.

Cause Register ExcCode Value

RI (See Table 9.43 on page 211)

Additional State Saved

None

Entry Vector Used

General exception vector (offset 0x180)

 Interrupts and Exceptions

111MIPS® Architecture For Programmers Volume III: The MIPS64® and microMIPS64™ Privileged Resource Architecture, Re-
vision 5.04

6.2.22 Coprocessor Unusable Exception

A coprocessor unusable exception occurs if any of the following conditions is true:

• A COP0 or Cache instruction was executed while the processor was running in a mode other than Debug Mode
or Kernel Mode, and the CU0 bit in the Status register was a zero

• A COP1, COP1X, LWC1, SWC1, LDC1, SDC1 or MOVCI (Special opcode function fiel encoding) instruction
was executed and the CU1 bit in the Status register was a zero.

• A COP2, LWC2, SWC2, LDC2, or SDC2 instruction was executed, and the CU2 bit in the Status register was a
zero. COP2 instructions include MFC2, DMFC2, CFC2, MFHC2, MTC2, DMTC2, CTC2, MTHC2.

Cause Register ExcCode Value

CpU (See Table 9.42 on page 208)

Additional State Saved

Entry Vector Used

General exception vector (offset 0x180)

6.2.23 MDMX Unusable Exception

An MDMX unusable exception occurs if the MDMX instruction is executed and the MX bit of the Status register is a
0. Such an exception is used by the operating system to save and restore the state of the MDMX accumulator on a
context switch (analogous to the save and restore of the FPRs).

Register ExcCode Value

MDMX (See Table 9.42 on page 208)

Additional State Saved

None

Entry Vector Used

General exception vector (offset 0x180)

6.2.24 Floating Point Exception

A floating point xception is initiated by the floating point coprocessor to signal a floating point xception.

Register ExcCode Value

FPE (See Table 9.42 on page 208)

Register State Value

CauseCE unit number of the coprocessor being referenced

6.2 Exceptions

MIPS® Architecture For Programmers Volume III: The MIPS64® and microMIPS64™ Privileged Resource Architecture, Revi-
sion 5.04 112

Additional State Saved

Entry Vector Used

General exception vector (offset 0x180)

6.2.25 Coprocessor 2 Exception

A coprocessor 2 exception is initiated by coprocessor 2 to signal a precise coprocessor 2 exception.

Register ExcCode Value

C2E (See Table 9.42 on page 208)

Additional State Saved

Defined by the coprocesso

Entry Vector Used

General exception vector (offset 0x180)

6.2.26 Watch Exception

The watch facility provides a software debugging vehicle by initiating a watch exception when an instruction or data
reference matches the address information stored in the WatchHi and WatchLo registers. A watch exception is taken
immediately if the EXL and ERL bits of the Status register are both zero. If either bit is a one at the time that a watch
exception would normally be taken, the WP bit in the Cause register is set, and the exception is deferred until both the
EXL and ERL bits in the Status register are zero. Software may use the WP bit in the Cause register to determine if
the EPC register points at the instruction that caused the watch exception, or if the exception actually occurred while
in kernel mode.

If the EXL or ERL bits are one in the Status register and a single instruction generates both a watch exception (which
is deferred by the state of the EXL and ERL bits) and a lower-priority exception, the lower priority exception is taken.

Watch exceptions are never taken if the processor is executing in Debug Mode. Should a watch register match while
the processor is in Debug Mode, the exception is inhibited and the WP bit is not changed.

It is implementation-dependent whether a data watch exception is triggered by a prefetch or cache instruction whose
address matches the Watch register address match conditions. A watch triggered by a SC or SCD instruction does so
even if the store would not complete because the LL bit is zero.

Register ExcCode Value

WATCH (See Table 9.42 on page 208)

Register State Value

FCSR indicates the cause of the floating point xception

 Interrupts and Exceptions

113MIPS® Architecture For Programmers Volume III: The MIPS64® and microMIPS64™ Privileged Resource Architecture, Re-
vision 5.04

Additional State Saved

Entry Vector Used

General exception vector (offset 0x180)

6.2.27 Interrupt Exception

The interrupt exception occurs when an enabled request for interrupt service is made. See Section 6.1 on page 80 for
more information.

Register ExcCode Value

Int (See Table 9.43 on page 211)

Additional State Saved

Entry Vector Used

General exception vector (offset 0x180) if the IV bit in the Cause register is zero.

Interrupt vector (offset 0x200) if the IV bit in the Cause register is one.

Register State Value

CauseWP Indicates that the watch exception was deferred until after
both StatusEXL and StatusERL were zero. This bit directly
causes a watch exception, so software must clear this bit as
part of the exception handler to prevent a watch exception
loop at the end of the current handler execution.

Register State Value

CauseIP indicates the interrupts that are pending.

Chapter 7

MIPS® Architecture For Programmers Volume III: The MIPS64® and microMIPS64™ Privileged Resource Architecture, Revi-
sion 5.04 114

GPR Shadow Registers

The capability in this chapter is targeted at removing the need to save and restore GPRs on entry to high priority inter-
rupts or exceptions, and to provide specified processor modes with the same capabilit . This is done by introducing
multiple copies of the GPRs, called shadow sets, and allowing privileged software to associate a shadow set with
entry to Kernel Mode via an interrupt vector or exception. The normal GPRs are logically considered shadow set
zero.

The number of GPR shadow sets is implementation-dependent and may range from one (the normal GPRs) to an
architectural maximum of 16. The highest number actually implemented is indicated by the SRSCtlHSS field, and al
shadow sets between 0 and SRSCtlHSS, inclusive must be implemented. If this fiel is zero, only the normal GPRs are
implemented.

7.1 Introduction to Shadow Sets

Shadow sets are new copies of the GPRs that can be substituted for the normal GPRs on entry to Kernel Mode via an
interrupt or exception. Once a shadow set is bound to a Kernel Mode entry condition, reference to GPRs work exactly
as one would expect, but they are redirected to registers that are dedicated to that condition. Privileged software may
need to reference all GPRs in the register file, ven specific shad w registers that are not visible in the current mode.
The RDPGPR and WRPGPR instructions are used for this purpose. The CSS fiel of the SRSCtl register provides the
number of the current shadow register set, and the PSS field of th SRSCtl register provides the number of the previ-
ous shadow register set (that which was current before the last exception or interrupt occurred).

If the processor is operating in VI interrupt mode, binding of a vectored interrupt to a shadow set is done by writing to
the SRSMap register. If the processor is operating in EIC interrupt mode, the binding of the interrupt to a specifi
shadow set is provided by the external interrupt controller, and is configured in an implementation-dependent ay.
Binding of an exception or non-vectored interrupt to a shadow set is done by writing to the ESS field of th SRSCtl
register. When an exception or interrupt occurs, the value of SRSCtlCSS is copied to SRSCtlPSS, and SRSCtlCSS is set
to the value taken from the appropriate source. On an ERET, the value of SRSCtlPSS is copied back into SRSCtlCSS to
restore the shadow set of the mode to which control returns. More precisely, the rules for updating the fields in th
SRSCtl register on an interrupt or exception are as follows:

1. No field in th SRSCtl register is updated if any of the following conditions are true. In this case, steps 2 and 3
are skipped.

• The exception is one that sets StatusERL: NMI or cache error.

• The exception causes entry into EJTAG Debug Mode

• StatusBEV = 1

• StatusEXL = 1

2. SRSCtlCSS is copied to SRSCtlPSS

 GPR Shadow Registers

115MIPS® Architecture For Programmers Volume III: The MIPS64® and microMIPS64™ Privileged Resource Architecture, Re-
vision 5.04

3. SRSCtlCSS is updated from one of the following sources:

• The appropriate field of th SRSMap register, based on IPL, if the exception is an interrupt, CauseIV = 1,
IntCtlVSS ≠ 0, Config3VEIC = 0, and Config3VInt = 1. These are the conditions for a vectored interrupt.

• The EICSS field of th SRSCtl register if the exception is an interrupt, CauseIV = 1, IntCtlVSS ≠ 0, and
Config3VEIC = 1. These are the conditions for a vectored EIC interrupt.

• The ESS fiel of the SRSCtl register in any other case. This is the condition for a non-interrupt exception, or
a non-vectored interrupt.

Similarly, the rules for updating the field in the SRSCtl register at the end of an exception or interrupt are as follows:

1. No fiel in the SRSCtl register is updated if any of the following conditions is true. In this case, step 2 is skipped.

• A DERET is executed

• An ERET is executed with StatusERL = 1 or StatusBEV = 1

2. SRSCtlPSS is copied to SRSCtlCSS

These rules have the effect of preserving the SRSCtl register in any case of a nested exception or one which occurs
before the processor has been fully initialize (StatusBEV = 1).

Privileged software may switch the current shadow set by writing a new value into SRSCtlPSS, loading EPC with a
target address, and doing an ERET.

7.2 Support Instructions

Table 7.1 Instructions Supporting Shadow Sets

Mnemonic Function MIPS64 Only?

RDPGPR Read GPR From Previous Shadow Set No

WRPGPR Write GPR to Shadow Set No

Chapter 8

MIPS® Architecture For Programmers Volume III: The MIPS64® and microMIPS64™ Privileged Resource Architecture, Revi-
sion 5.04 116

CP0 Hazards

8.1 Introduction

Because resources controlled via Coprocessor 0 affect the operation of various pipeline stages of a MIPS64/
microMIPS64 processor, manipulation of these resources may produce results that are not detectable by subsequent
instructions for some number of execution cycles. When no hardware interlock exists between one instruction that
causes an effect that is visible to a second instruction, a CP0 hazard exists.

In Release 1 of the MIPS64® Architecture, CP0 hazards were relegated to implementation-dependent cycle-based
solutions, primarily based on the SSNOP instruction. Since that time, it has become clear that this is an insufficien
and error-prone practice that must be addressed with a firm compact between hard are and software. As such, new
instructions have been added to Release 2 of the architecture which act as explicit barriers that eliminate hazards. To
the extent that it was possible to do so, the new instructions have been added in such a way that they are backward-
compatible with existing MIPS processors.

8.2 Types of Hazards

In privileged software, there are two different types of hazards: execution hazards and instruction hazards. Both are
defined bel w.

Implementations using Release 1 of the architecture should refer to their Implementation documentation for the
required instruction “spacing” that is required to eliminate these hazards.

Note that, for superscalar MIPS implementations, the number of instructions issued per cycle may be greater than
one, and thus that the duration of the hazard in instructions may be greater than the duration in cycles. It is for this
reason that MIPS64 Release 1 defines the SSNOP instruction to convert instruction issues to cycles in a superscalar
design.

8.2.1 Possible Execution Hazards

Execution hazards are those created by the execution of one instruction, and seen by the execution of another instruc-
tion. Table 8.1 lists the possible execution hazards that might exist when there are no hardware interlocks.

Table 8.1 Possible Execution Hazards

Producer → Consumer Hazard On

Hazards Related to the TLB

MTC0 → TLBR,
TLBWI,
TLBWR

EntryHi

 CP0 Hazards

117MIPS® Architecture For Programmers Volume III: The MIPS64® and microMIPS64™ Privileged Resource Architecture, Re-
vision 5.04

MTC0 → TLBWI,
TLBWR

EntryLo0,
EntryLo1,

Index,
PageMask,
PageGrain

MTCO → TLBWR Wired

MTC0 → TLBP,
Load or Store Instruction

EntryHiASID

MTC0 → Load/store affected by new
state

EntryHiASID,
WatchHi,
WatchLo,

Confi

TLBP → MFC0, TLBWI Index

TLBR → MFC0 EntryHi,
EntryLo0,
EntryLo1,
PageMask

TLBWI,
TLBWR

→ TLBP,
TLBR,
Load/store using new TLB
entry

TLB entry

Hazards Related to Exceptions or Interrupts

MTC0 → Coprocessor instruction
execution depends on the
new value of StatusCU

StatusCU

MTC0 → ERET DEPC,
EPC,

ErrorEPC,
Status

MTC0 → Interrupted Instruction CauseIP,
CauseIV

Compare,
Count,

PerfCnt ControlIE,
PerfCnt Counter,

StatusIE,
StatusIM
EBase
SRSCtl

SRSMap

EI, DI → Interrupted Instruction StatusIE,
StatusIM

Other Hazards

LL, LLD → MFC0 LLAddr

MTC0 → CACHE PageGrain

CACHE → MFC0 TagLo

Table 8.1 Possible Execution Hazards

Producer → Consumer Hazard On

8.3 Hazard Clearing Instructions and Events

MIPS® Architecture For Programmers Volume III: The MIPS64® and microMIPS64™ Privileged Resource Architecture, Revi-
sion 5.04 118

8.2.2 Possible Instruction Hazards

Instruction hazards are those created by the execution of one instruction, and seen by the instruction fetch of another
instruction. Table 8.2 lists the possible instruction hazards when there are no hardware interlocks.

8.3 Hazard Clearing Instructions and Events

Table 8.3 lists the instructions designed to eliminate hazards.

MTC0 → MFC0 any CoProcessor 0 register

Table 8.2 Possible Instruction Hazards

Producer → Consumer Hazard On

Hazards Related to the TLB

MTC0 → Instruction fetch seeing the new value EntryHiASID,
WatchHi,
WatchLo
Confi

MTC0 → Instruction fetch seeing the new value
(including a change to ERL followed by
an instruction fetch from the useg seg-
ment)

Status

TLBWI,
TLBWR

→ Instruction fetch using new TLB entry TLB entry

Hazards Related to Writing the Instruction Stream or Modifying an Instruction Cache
Entry

Instruction stream
writes

→ Instruction fetch seeing the new instruc-
tion stream

Cache entries

CACHE → Instruction fetch seeing the new instruc-
tion stream

Cache entries

Other Hazards

MTC0 → RDPGPR
WRPGPR

SRSCtlPSS
1

1. This is not precisely a hazard on the instruction fetch. Rather it is a hazard on a modifi
cation to the previous GPR context field, foll wed by a previous-context reference to
the GPRs. It is considered an instruction hazard rather than an execution hazard because
some implementation may require that the previous GPR context be established early in
the pipeline, and execution hazards are not meant to cover this case.

Table 8.3 Hazard Clearing Instructions

Mnemonic Function
Supported

Architecture

DERET Clear both execution and instruction hazards EJTAG

Table 8.1 Possible Execution Hazards

Producer → Consumer Hazard On

 CP0 Hazards

119MIPS® Architecture For Programmers Volume III: The MIPS64® and microMIPS64™ Privileged Resource Architecture, Re-
vision 5.04

DERET, ERET, and SSNOP are available in Release 1 of the Architecture; EHB, JALR.HB, JR.HB, and SYNCI
were added in Release 2 of the Architecture. In both Release 1 and Release 2 of the Architecture, DERET and ERET
clear both execution and instruction hazards and they are the only timing-independent instructions which will do this
in both releases of the architecture.

Even though DERET and ERET clear hazards between the execution of the instruction and the target instruction
stream, an execution hazard may still be created between a write of the DEPC, EPC, ErrorEPC, or Status registers and
the DERET or ERET instruction.

In addition, an exception or interrupt also clears both execution and instruction hazards between the instruction that
created the hazard and the firs instruction of the exception or interrupt handler. Said another way, no hazards remain
visible by the first instruction of an xception or interrupt handler.

8.3.1 MIPS64 Instruction Encoding

The EHB instruction is encoded using a variant of the NOP/SSNOP encoding. This encoding was chosen for compat-
ibility with the Release 1 SSNOP instruction, such that existing software may be modifie to be compatible with both
Release 1 and Release 2 implementations. See the EHB instruction description for additional information.

The JALR.HB and JR.HB instructions are encoding using bit 10 of the hint field of the ALR and JR instructions.
These encodings were chosen for compatibility with existing MIPS implementations, including many which pre-date
the MIPS64 architecture. Because a pipeline flush clears hazards on most early implementations, the ALR.HB or
JR.HB instructions can be included in existing software for backward and forward compatibility. See the JALR.HB
and JR.HB instructions for additional information.

The SYNCI instruction is encoded using a new encoding of the REGIMM opcode. This encoding was chosen
because it causes a Reserved Instruction exception on all Release 1 implementations. As such, kernel software run-
ning on processors that don’t implement Release 2 can emulate the function using the CACHE instruction.

EHB Clear execution hazard Release 2
onwards

ERET Clear both execution and instruction hazards All

IRET Clear both execution and instruction hazards when not
chaining to another interrupt.

MCU ASE

JALR.HB Clear both execution and instruction hazards Release 2
onwards

JR.HB Clear both execution and instruction hazards Release 2
onwards

SSNOP Superscalar No Operation Release 1
onwards

SYNCI1 Synchronize caches after instruction stream write Release 2
onwards

1. SYNCI synchronizes caches after an instruction stream write, and before execution of that
instruction stream. As such, it is not precisely a coprocessor 0 hazard, but is included here
for completeness.

Table 8.3 Hazard Clearing Instructions

Mnemonic Function
Supported

Architecture

8.3 Hazard Clearing Instructions and Events

MIPS® Architecture For Programmers Volume III: The MIPS64® and microMIPS64™ Privileged Resource Architecture, Revi-
sion 5.04 120

8.3.2 microMIPS64 Instruction Encoding

The EHB and SSNOP instructions are encoded using a variant of the NOP encoding. See the EHB and SSNOP
instruction description for additional information.

 CP0 Hazards

121MIPS® Architecture For Programmers Volume III: The MIPS64® and microMIPS64™ Privileged Resource Architecture, Re-
vision 5.04

Chapter 9

MIPS® Architecture For Programmers Volume III: The MIPS64® and microMIPS64™ Privileged Resource Architecture, Revi-
sion 5.04 122

Coprocessor 0 Registers

The Coprocessor 0 (CP0) registers provide the interface between the ISA and the PRA. Each register is discussed
below, with the registers presented in numerical order, first by r gister number, then by select field numbe .

9.1 Coprocessor 0 Register Summary

Table 9.1 lists the CP0 registers in numerical order. The individual registers are described later in this document. If
the compliance level is qualified (e.g., Required (TLB MMU)”), it applies only if the qualifying condition is true.
The Sel column indicates the value to be used in the field of the same name in the MFC0 and MTC0 instructions

Table 9.1 Coprocessor 0 Registers in Numerical Order

Register
Number Sel1 Register Name Function Reference Compliance Level

0 0 Index Index into the TLB array Section 9.4 on page
129

Required (TLB
MMU); Optional (Oth-

ers)

0 1 MVPControl Per-processor register containing global
MIPS® MT configuration dat

MIPS®MT Module
Specificatio

Required (MIPS MT
Module); Optional

(Others)

0 2 MVPConf0 Per-processor multi-VPE dynamic configu
ration information

MIPS®MT Module
Specificatio

Required (MIPS MT
Module); Optional

(Others)

0 3 MVPConf1 Per-processor multi-VPE dynamic configu
ration information

MIPS®MT Module
Specificatio

Optional

1 0 Random Randomly generated index into the TLB
array

Section 9.5 on page
130

Required (TLB
MMU); Optional (Oth-

ers)

1 1 VPEControl Per-VPE register containing relatively vol-
atile thread configuration dat

MIPS®MT Module
Specificatio

Required (MIPS MT
Module); Optional

(Others)

1 2 VPEConf0 Per-VPE multi-thread configuration infor
mation

MIPS®MT Module
Specificatio

Required (MIPS MT
Module); Optional

(Others)

1 3 VPEConf1 Per-VPE multi-thread configuration infor
mation

MIPS®MT Module
Specificatio

Optional

1 4 YQMask Per-VPE register defining which YIEL
qualifier bits may be used without generat
ing an exception

MIPS®MT Module
Specificatio

Required (MIPS MT
Module); Optional

(Others)

1 5 VPESchedule Per-VPE register to manage scheduling of
a VPE within a processor

MIPS®MT Module
Specificatio

Optional

1 6 VPEScheFBack Per-VPE register to provide scheduling
feedback to software

MIPS®MT Module
Specificatio

Optional

 Coprocessor 0 Registers

123MIPS® Architecture For Programmers Volume III: The MIPS64® and microMIPS64™ Privileged Resource Architecture, Re-
vision 5.04

1 7 VPEOpt Per-VPE register to provide control over
optional features, such as cache partition-
ing control

MIPS®MT Module
Specificatio

Optional

2 0 EntryLo0 Low-order portion of the TLB entry for
even-numbered virtual pages

Section 9.6 on page
131

Required (TLB
MMU); Optional (Oth-

ers)

2 1 TCStatus Per-TC status information, including cop-
ies of thread-specific bits o Status and
EntryHi registers.

MIPS®MT Module
Specificatio

Required (MIPS MT
Module); Optional

(Others)

2 2 TCBind Per-TC information about TC ID and VPE
binding

MIPS®MT Module
Specificatio

Required (MIPS MT
Module); Optional

(Others)

2 3 TCRestart Per-TC value of restart instruction address
for the associated thread of execution

MIPS®MT Module
Specificatio

Required (MIPS MT
Module); Optional

(Others)

2 4 TCHalt Per-TC register controlling Halt state of TC MIPS®MT Module
Specificatio

Required (MIPS MT
Module); Optional

(Others)

2 5 TCContext Per-TC read/write storage for operating
system use

MIPS®MT Module
Specificatio

Required (MIPS MT
Module); Optional

(Others)

2 6 TCSchedule Per-TC register to manage scheduling of a
TC

MIPS®MT Module
Specificatio

Optional

2 7 TCScheFBack Per-TC register to provide scheduling feed-
back to software

MIPS®MT Module
Specificatio

Optional

3 0 EntryLo1 Low-order portion of the TLB entry for
odd-numbered virtual pages

Section 9.6 on page
131

Required (TLB
MMU); Optional (Oth-

ers)

3 7 TCOpt Per-TC register to provide control over
optional features, such as cache partition-
ing control

MIPS®MT Module
Specificatio

Optional

4 0 Context Pointer to page table entry in memory Section 9.7 on page
141

Required (TLB
MMU); Optional (Oth-

ers)

4 1 ContextConfi Context register configuratio SmartMIPS ASE
Specification and Sec
tion 9.8 on page 145

Required (SmartMIPS
ASE); Optional (Oth-

ers)

4 2 UserLocal User information that can be written by
privileged software and read via RDHWR
register 29. If the processor implements the
MIPS® MT Module, this is a per-TC reg-
ister.

Section 9.9 on page
147

Recommended
(Release 2)

4 3 XContextConfi XContext register configuratio Section 9.10 on page
148

Optional

Table 9.1 Coprocessor 0 Registers in Numerical Order

Register
Number Sel1 Register Name Function Reference Compliance Level

9.1 Coprocessor 0 Register Summary

MIPS® Architecture For Programmers Volume III: The MIPS64® and microMIPS64™ Privileged Resource Architecture, Revi-
sion 5.04 124

5 0 PageMask Control for variable page size in TLB
entries

Section 9.11 on page
150

Required (TLB
MMU); Optional (Oth-

ers)

5 1 PageGrain Control for small page support Section 9.12 on page
153 and SmartMIPS
ASE Specificatio

Required (SmartMIPS
ASE); Optional

(Release 2)

5 2 SegCtl0 Programmable Control for Segments 0 & 1 Section 9.13 on page
159

Optional

5 3 SegCtl1 Programmable Control for Segments 2 & 3 Section 9.14 on page
159

Optional

5 4 SegCtl2 Programmable Control for Segments 4 & 5 Section 9.15 on page
159

Optional

5 5 PWBase Page Table Base Address for Hardware
Page Walker

Section 9.16 on page
165

Optional

5 6 PWField Bit indices of pointers for Hardware Page
Walker

Section 9.17 on page
165

Optional

5 7 PWSize Size of pointers for Hardware Page Walker Section 9.18 on page
168

Optional

6 0 Wired Controls the number of fi ed (“wired”)
TLB entries

Section 9.19 on page
174

Required (TLB
MMU); Optional (Oth-

ers)

6 1 SRSConf0 Per-VPE register indicating and optionally
controlling shadow register set configura
tion

MIPS®MT Module
Specificatio

Required (MIPS MT
Module); Optional

(Others)

6 2 SRSConf1 Per-VPE register indicating and optionally
controlling shadow register set configura
tion

MIPS®MT Module
Specificatio

Optional

6 3 SRSConf2 Per-VPE register indicating and optionally
controlling shadow register set configura
tion

MIPS®MT Module
Specificatio

Optional

6 4 SRSConf3 Per-VPE register indicating and optionally
controlling shadow register set configura
tion

MIPS®MT Module
Specificatio

Optional

6 5 SRSConf4 Per-VPE register indicating and optionally
controlling shadow register set configura
tion

MIPS®MT Module
Specificatio

Optional

6 6 PWCtl HW Page Walker Control Section 9.20 on page
177

Optional

7 0 HWREna Enables access via the RDHWR instruction
to selected hardware registers

Section 9.21 on page
181

Required (Release 2)

7 1-7 Reserved for future extensions Reserved

8 0 BadVAddr Reports the address for the most recent
address-related exception

Section 9.22 on page
183

Required

8 1 BadInstr Reports the instruction which caused the
most recent exception.

Section 9.23 on page
185

Optional

Table 9.1 Coprocessor 0 Registers in Numerical Order

Register
Number Sel1 Register Name Function Reference Compliance Level

 Coprocessor 0 Registers

125MIPS® Architecture For Programmers Volume III: The MIPS64® and microMIPS64™ Privileged Resource Architecture, Re-
vision 5.04

8 2 BadInstrP Reports the branch instruction if a delay
slot caused the most recent exception.

Section 9.24 on page
187

Optional

9 0 Count Processor cycle count Section 9.25 on page
188

Required

9 6-7 Available for implementation-dependent
user

Section 9.26 on page
188

implementation-depen-
dent

10 0 EntryHi High-order portion of the TLB entry Section 9.27 on page
189

Required (TLB
MMU); Optional (Oth-

ers)

10 4 GuestCtl1 GuestID of virtualized Guest MIPS® VZE Module
Specificatio

Required (MIPS VZE
Module ; Optional

(Others)

10 5 GuestCtl2 Guest Interrupt Control MIPS® VZE Module
Specificatio

Required (MIPS VZE
Module ; Optional

(Others)

10 6 GuestCtl3 Guest Shadow Register Set Control MIPS® VZE Module
Specificatio

Required (MIPS VZE
Module ; Optional

(Others)

11 0 Compare Timer interrupt control Section 9.28 on page
192

Required

11 4 GuestCtl0Ext Extension of GuestCtl0 MIPS® VZE Module
Specificatio

Required (MIPS VZE
Module ; Optional

(Others)

11 6-7 Available for implementation-dependent
user

Section 9.29 on page
192

implementation-depen-
dent

12 0 Status Processor status and control Section 9.30 on page
193

Required

12 1 IntCtl Interrupt system status and control Section 9.31 on page
201

Required (Release 2)

12 2 SRSCtl Shadow register set status and control Section 9.32 on page
204

Required (Release 2)

12 3 SRSMap Shadow set IPL mapping Section 9.33 on page
207

Required (Release 2
and shadow sets imple-

mented)

12 4 View_IPL Contiguous view of IM and IPL fields MIPS® MCU ASE
Specificatio

Required (MIPS MCU
ASE); Optional (Oth-

ers)

12 5 SRSMap2 Shadow set IPL mapping MIPS® MCU ASE
Specificatio

Required (MIPS MCU
ASE); Optional (Oth-

ers)

12 6 GuestCtl0 Control of Virtualized Guest OS MIPS® VZE Module
Specificatio

Required (MIPS VZE
Module); Optional

(Others)

Table 9.1 Coprocessor 0 Registers in Numerical Order

Register
Number Sel1 Register Name Function Reference Compliance Level

9.1 Coprocessor 0 Register Summary

MIPS® Architecture For Programmers Volume III: The MIPS64® and microMIPS64™ Privileged Resource Architecture, Revi-
sion 5.04 126

12 7 GTOffset Guest Timer Offset MIPS® VZE Module
Specificatio

Required (MIPS VZE
Module); Optional

(Others)

13 0 Cause Cause of last general exception Section 9.34 on page
208

Required

13 4 View_RIPL Contiguous view of IP and RIPL fields MIPS® MCU ASE
Specificatio

Required (MIPS MCU
ASE); Optional (Oth-

ers)

13 5 NestedExc Nested exception Support - EXL, ERL val-
ues at current exception

Section 9.35 on page
213

Optional

14 0 EPC Program counter at last exception Section 9.36 on page
214

Required

14 2 NestedEPC Nested exception Support - Program
Counter at current exception

Section 9.37 on page
217

Optional

15 0 PRId Processor identification and r vision Section 9.38 on page
218

Required

15 1 EBase Exception vector base register Section 9.39 on page
220

Required (Release 2)

15 2 CDMMBase Common Device Memory Map Base
register

Section 9.40 on page
223

Optional

15 3 CMGCRBase Coherency Manager Global Control Regis-
ter Base register

Section 9.41 on page
225

Optional

16 0 Confi Configuration r gister Section 9.42 on page
226

Required

16 1 Config Configuration r gister 1 Section 9.43 on page
229

Required

16 2 Config Configuration r gister 2 Section 9.44 on page
233

Optional

16 3 Config Configuration r gister 3 Section 9.45 on page
236

Optional

16 3 Config Configuration r gister 4 Section 9.46 on page
245

Optional

16 4 Config Configuration r gister 5 Section 9.47 on page
251

Optional

16 6-7 Available for implementation-dependent
user

Section 9.48 on page
255

implementation-depen-
dent

17 0 LLAddr Load linked address Section 9.49 on page
256

Optional

18 0-n WatchLo Watchpoint address Section 9.50 on page
258

Optional

19 0-n WatchHi Watchpoint control Section 9.51 on page
260

Optional

Table 9.1 Coprocessor 0 Registers in Numerical Order

Register
Number Sel1 Register Name Function Reference Compliance Level

 Coprocessor 0 Registers

127MIPS® Architecture For Programmers Volume III: The MIPS64® and microMIPS64™ Privileged Resource Architecture, Re-
vision 5.04

20 0 XContext Extended Addressing Page Table Context Section 9.52 on page
262

Required (64-bit TLB
MMU) Optional (Oth-

ers)

21 all Reserved for future extensions. Reserved

22 all Available for implementation-dependent
use

Section 9.53 on page
265

implementation-depen-
dent

23 0 Debug EJTAG Debug register EJTAG Specificatio Optional

23 1 TraceControl PDtrace control register PDtrace Specificatio Optional

23 2 TraceControl2 PDtrace control register PDtrace Specificatio Optional

23 3 UserTraceData1 PDtrace control register PDtrace Specificatio Optional

23 4 TraceIBPC PDtrace control register PDtrace Specificatio Optional

23 5 TraceDBPC PDtrace control register PDtrace Specificatio Optional

23 6 Debug2 EJTAG Debug2 register EJTAG Specificatio Optional

24 0 DEPC Program counter at last EJTAG debug
exception

EJTAG Specificatio Optional

24 2 TraceContol3 PDtrace control register PDtrace Specificatio Optional

24 3 UserTraceData2 PDtrace control register PDtrace Specificatio Optional

25 0-n PerfCnt Performance counter interface Section 9.57 on page
269

Recommended

26 0 ErrCtl Parity/ECC error control and status Section 9.58 on page
274

Optional

27 0-3 CacheErr Cache parity error control and status Section 9.59 on page
275

Optional

28 even
selects

TagLo Low-order portion of cache tag interface Section 9.60 on page
276

 Required (Cache)

28 odd
selects

DataLo Low-order portion of cache data interface Section 9.61 on page
278

Optional

29 even
selects

TagHi High-order portion of cache tag interface Section 9.62 on page
279

Required (Cache)

29 odd
selects

DataHi High-order portion of cache data interface Section 9.63 on page
280

Optional

30 0 ErrorEPC Program counter at last error Section 9.64 on page
281

Required

31 0 DESAVE EJTAG debug exception save register EJTAG Specificatio Optional

31 2-7 KScratchn Scratch Registers for Kernel Mode Section 9.66 on page
285

Optional; KScratch1 at
select 2 and KScratch2
at select 3 are recom-

mended.

1. Any select (Sel) value not explicitly noted as available for implementation-dependent use is reserved for future use by the Architec-
ture.

Table 9.1 Coprocessor 0 Registers in Numerical Order

Register
Number Sel1 Register Name Function Reference Compliance Level

9.2 Notation

MIPS® Architecture For Programmers Volume III: The MIPS64® and microMIPS64™ Privileged Resource Architecture, Revi-
sion 5.04 128

9.2 Notation

For each register described below, field descriptions include the read/write properties of the field, and the reset sta
of the field. or the read/write properties of the field, the foll wing notation is used:

9.3 Writing CPU Registers

With certain restrictions, software may assume that it can validly write the value read from a coprocessor 0 register
back to that register without having unintended side effects. This rule means that software can read a register, modify
one field, and write the alue back to the register without having to consider the impact of writes to other fields. Pro
cessor designers should take this into consideration when using coprocessor 0 register fields that are reser ed for
implementations and make sure that the use of these bits is consistent with software assumptions.

The most significan exception to this rule is a situation in which the processor modifie the register between the soft-
ware read and write, such as might occur if an exception or interrupt occurs between the read and write. Software
must guarantee that such an event does not occur.

Table 9.2 Read/Write Bit Field Notation

Read/Write
Notation Hardware Interpretation Software Interpretation

R/W A field in which all bits are readable and writable by soft are and, potentially, by hardware.
Hardware updates of this field are visible by soft are read. Software updates of this field are visi
ble by hardware read.
If the Reset State of this fiel is “Undefined” either software or hardware must initialize the value
before the first read will return a predictable alue. This should not be confused with the formal
definition o UNDEFINED behavior.

R A field which is either static or is updated onl
by hardware.
If the Reset State of this fiel is either “0”, “Pre-
set”, or “Externally Set”, hardware initializes
this field to zero or to the appropriate state
respectively, on powerup. The term “Preset” is
used to suggest that the processor establishes the
appropriate state, whereas the term “Externally
Set” is used to suggest that the state is estab-
lished via an external source (e.g., personality
pins or initialization bit stream). These terms are
suggestions only, and are not intended to act as a
requirement on the implementation.
If the Reset State of this field is “Undefined
hardware updates this field only under thos
conditions specified in the description of th
field

A fiel to which the value written by software is
ignored by hardware. Software may write any
value to this field without a fecting hardware
behavior. Software reads of this field return th
last value updated by hardware.
If the Reset State of this field is “Undefined
software reads of this field result in a UNPRE-
DICTABLE value except after a hardware
update done under the conditions specified i
the description of the field

0 A fiel which hardware does not update, and for
which hardware can assume a zero value.

A field to which the alue written by software
must be zero. Software writes of non-zero val-
ues to this field may result i UNDEFINED
behavior of the hardware. Software reads of this
fiel return zero as long as all previous software
writes are zero.
If the Reset State of this field is “Undefined
software must write this fiel with zero before it
is guaranteed to read as zero.

129MIPS® Architecture For Programmers Volume III: The MIPS64® and microMIPS64™ Privileged Resource Architecture, Re-
vision 5.04

9.4 Index Register (CP0 Register 0, Select 0)

Compliance Level: Required for TLB-based MMUs; Optional otherwise.

The Index register is a 32-bit read/write register which contains the index used to access the TLB for TLBP, TLBR,
and TLBWI instructions. The width of the index field is implementation-dependent as a function of the number o
TLB entries that are implemented. The minimum value for TLB-based MMUs is Ceiling(Log2(TLBEntries)). For
example, six bits are required for a TLB with 48 entries).

The operation of the processor is UNDEFINED if a value greater than or equal to the number of TLB entries is writ-
ten to the Index register.

Figure 9.1 shows the format of the Index register; Table 9.3 describes the Index register fields

Figure 9.1 Index Register Format
31 n n-1 0

P 0 Index

Table 9.3 Index Register Field Descriptions

Fields

Description
Read/
Write Reset State ComplianceName Bits

P 31 Probe Failure. Hardware writes this bit during execution
of the TLBP instruction to indicate whether a TLB
match occurred:

R Undefine Required

0 30..n Must be written as zero; returns zero on read. 0 0 Reserved

Index n-1..0 TLB index. Software writes this field to pr vide the
index to the TLB entry referenced by the TLBR and
TLBWI instructions.
Hardware writes this field with the ind x of the match-
ing TLB entry during execution of the TLBP instruction.
If the TLBP fails to find a match, the contents of thi
field ar UNPREDICTABLE.

R/W Undefine Required

Encoding Meaning

0 A match occurred, and the Index fiel
contains the index of the matching
entry

1 No match occurred and the Index fiel
is UNPREDICTABLE

9.5 Random Register (CP0 Register 1, Select 0)

MIPS® Architecture For Programmers Volume III: The MIPS64® and microMIPS64™ Privileged Resource Architecture, Revi-
sion 5.04 130

9.5 Random Register (CP0 Register 1, Select 0)

Compliance Level: Required for TLB-based MMUs; Optional otherwise.

The Random register is a read-only register whose value is used to index the TLB during a TLBWR instruction. The
width of the Random field is calculated in the same manner as that described for th Index register above.

The value of the register varies between an upper and lower bound as follow:

• A lower bound is set by the number of TLB entries reserved for exclusive use by the operating system (the con-
tents of the Wired register). The entry indexed by the Wired register is the first entry vailable to be written by a
TLB Write Random operation.

• An upper bound is set by the total number of TLB entries minus 1.

Within the required constraints of the upper and lower bounds, the manner in which the processor selects values for
the Random register is implementation-dependent.

The processor initializes the Random register to the upper bound on a Reset Exception, and when the Wired register is
written.

Figure 9.2 shows the format of the Random register; Table 9.4 describes the Random register fields

Figure 9.2 Random Register Format
31 n n-1 0

0 Random

Table 9.4 Random Register Field Descriptions

Fields

Description
Read/
Write Reset State ComplianceName Bits

0 31. n Must be written as zero; returns zero on read. 0 0 Reserved

Random n-1..0 TLB Random Index R TLB Entries - 1 Required

131MIPS® Architecture For Programmers Volume III: The MIPS64® and microMIPS64™ Privileged Resource Architecture, Re-
vision 5.04

9.6 EntryLo0, EntryLo1 (CP0 Registers 2 and 3, Select 0)

Compliance Level: EntryLo0 is Required for a TLB-based MMU; Optional otherwise.

Compliance Level: EntryLo1 is Required for a TLB-based MMU; Optional otherwise.

The pair of EntryLo registers act as the interface between the TLB and the TLBP, TLBR, TLBWI, and TLBWR
instructions. EntryLo0 holds the entries for even pages and EntryLo1 holds the entries for odd pages.

Software may determine the value of PABITS by writing all ones to the EntryLo0 or EntryLo1 registers and reading
the value back. Bits read as “1” from the PFN fiel allow software to determine the boundary between the PFN/PFNX
and Fillfields to calculate the alue of PABITS.

The contents of the EntryLo0 and EntryLo1 registers are not defined after an address error xception, and some field
may be modified by hard are during the address-error exception sequence. Software writes to the EntryHi register
(via MTC0 or DMTC0) do not cause the implicit update of address-related fields in th BadVAddr or Context regis-
ters.

For Release 1 of the Architecture, Figure 9-3 shows the format of the EntryLo0 and EntryLo1 registers; Table 9.5
describes the EntryLo0 and EntryLo1 register fields

For Release 2 of the Architecture, Figure 9-4 shows the format of the EntryLo0 and EntryLo1 registers; Table 9.6
describes the EntryLo0 and EntryLo1 register fields. Release 2 of the architecture added support for physical addres
spaces beyond 36 bits in range and support for 1KB pages.

For Release 3 of the Architecture, Figure 9-5 and Figure 9-6 shows the format of the EntryLo0 and EntryLo1 registers;
Table 9.7 and Table 9.8 describe the EntryLo0 and EntryLo1 register fields. Release 3 of the architecture added sup
port for Read-Inhibit and Execute-Inhibit page protection bits. These protection bits appear in different bit locations
for the DMFC0/DMTC0 and MFC0/MTC0 instruction pairs to provide compatibilty between the 32-bit and 64-bit
architectures.

Figure 9-3 EntryLo0, EntryLo1 Register Format in Release 1 of the Architecture
63 32

Fill

Fill PFN C D V G

31 30 29 6 5 3 2 1 0

Table 9.5 EntryLo0, EntryLo1 Register Field Descriptions in Release 1 of the Architecture

Fields

Description
Read /
Write Reset State ComplianceName Bits

Fill 63..30 These bits are ignored on write and return zero on read.
The boundaries of this field change as a function of th
value of PABITS. See Table 9.1 for more information.

R 0 Required

9.6 EntryLo0, EntryLo1 (CP0 Registers 2 and 3, Select 0)

MIPS® Architecture For Programmers Volume III: The MIPS64® and microMIPS64™ Privileged Resource Architecture, Revi-
sion 5.04 132

PFN 29..6 Page Frame Number. Corresponds to bits PABITS-1..12
of the physical address, where PABITS is the width of
the physical address in bits. The boundaries of this fiel
change as a function of the value of PABITS. See Table
9.1 for more information.

R/W Undefine Required

C 5..3 Cacheability and Coherency Attribute of the page. See
Table 9.2 below.

R/W Undefine Required

D 2 “Dirty” bit, indicating that the page is writable. If this bit
is a one, stores to the page are permitted. If this bit is a
zero, stores to the page cause a TLB Modifie exception.
Kernel software may use this bit to implement paging
algorithms that require knowing which pages have been
written. If this bit is always zero when a page is initially
mapped, the TLB Modifie exception that results on any
store to the page can be used to update kernel data struc-
tures that indicate that the page was actually written.

R/W Undefine Required

V 1 Valid bit, indicating that the TLB entry, and thus the vir-
tual page mapping are valid. If this bit is a one, accesses
to the page are permitted. If this bit is a zero, accesses to
the page cause a TLB Invalid exception.

R/W Undefine Required

G 0 Global bit. On a TLB write, the logical AND of the G
bits from both EntryLo0 and EntryLo1 becomes the G
bit in the TLB entry. If the TLB entry G bit is a one,
ASID comparisons are ignored during TLB matches. On
a read from a TLB entry, the G bits of both EntryLo0
and EntryLo1 reflect the state of the TLB G bit

R/W Undefine Required (TLB
MMU)

Figure 9-4 EntryLo0, EntryLo1 Register Format in Release 2 of the Architecture
63 55 54 32

Fill PFNX

PFNX PFN C D V G

31 30 29 6 5 3 2 1 0

Table 9.6 EntryLo0, EntryLo1 Register Field Descriptions in Release 2 of the Architecture

Fields

Description
Read /
Write Reset State ComplianceName Bits

Fill 63..55 These bits are ignored on write and return zero on read.
The boundaries of this field change as a function of th
value of PABITS. See Table 9.1 for more information.

R 0 Required

Table 9.5 EntryLo0, EntryLo1 Register Field Descriptions in Release 1 of the Architecture

Fields

Description
Read /
Write Reset State ComplianceName Bits

133MIPS® Architecture For Programmers Volume III: The MIPS64® and microMIPS64™ Privileged Resource Architecture, Re-
vision 5.04

PFNX 54..30 Page Frame Number Extension. If the processor is
enabled to support large physical addresses
(Config3LPA = 1 and PageGrainELPA = 1), this field i
concatenated with the PFN field to form the full pag
frame number corresponding to the physical address,
thereby providing up to 59 bits of physical address.
If the processor is enabled to support 1KB pages
(Config3SP = 1 and PageGrainESP = 1), the combined
PFNX || PFN field corresponds to bits PABITS-1..10 of
the physical address (the fiel is shifted left by 2 bits rel-
ative to the Release 1 definition to ma e room for
PA11 10).
If the processor is not enabled to support 1KB pages
(Config3SP = 0 or PageGrainESP = 0), the combined
PFNX || PFN fields corresponds to 0b0 || bits
PABITS-1..12 of the physical address (the field i
unshifted and the upper two bits must be written as
zero).
The boundaries of this field change as a function of th
value of PABITS. See Table 9.1 for more information.
If support for large physical addresses is not enabled
(Config3LPA = 0 or PageGrainELPA = 0), these bits are
ignored on write and return 0 on read, thereby providing
full backward compatibility with implementations of
Release 1 of the Architecture.

R/W 0 Optional

PFN 29..6 Page Frame Number. This field contains least-signif
cant bits of the physical page number corresponding to
the virtual page. If the processor is enabled to support
large physical addresses, the PFNX field, describe
above is concatenated with the PFN fiel to form the full
page frame number. If the processor is not enabled to
support large physical addresses, the entire page frame
number is represented by this field. See the descriptio
of the PFNX field ab ve for more information.
If the processor is enabled to support 1KB pages
(Config3SP = 1 and PageGrainESP = 1), the PFN fiel
corresponds to bits 33..10 of the physical address (the
field is shifted left by 2 bits relat ve to the Release 1 def-
inition to make room for PA11 10).
If the processor is not enabled to support 1KB pages
(Config3SP = 0 or PageGrainESP = 0), the PFN fiel
corresponds to bits 35..12 of the physical address.
The boundaries of this field change as a function of th
value of PABITS. See Table 9.1 for more information.

R/W Undefine Required

C 5..3 The definitio of this fiel is unchanged from Release 1.
See Table 9.5 above and Table 9.2 below.

R/W Undefine Required

D 2 The definitio of this fiel is unchanged from Release 1.
See Table 9.5 above.

R/W Undefine Required

Table 9.6 EntryLo0, EntryLo1 Register Field Descriptions in Release 2 of the Architecture

Fields

Description
Read /
Write Reset State ComplianceName Bits

9.6 EntryLo0, EntryLo1 (CP0 Registers 2 and 3, Select 0)

MIPS® Architecture For Programmers Volume III: The MIPS64® and microMIPS64™ Privileged Resource Architecture, Revi-
sion 5.04 134

V 1 The definitio of this fiel is unchanged from Release 1.
See Table 9.5 above.

R/W Undefine Required

G 0 The definitio of this fiel is unchanged from Release 1.
See Table 9.5 above.

R/W Undefine Required (TLB
MMU)

Figure 9-5 EntryLo0, EntryLo1 Register Format in Release 3 of the Architecture when Accessed with
DMFC0 & DMTC0 Instructions

63 62 61 55 54 32

RI XI Fill PFNX

PFNX PFN C D V G

31 30 29 6 5 3 2 1 0

Table 9.7 EntryLo0, EntryLo1 Register Field Descriptions in Release 3 of the Architecture when
Accessed with DMFC0 and DMTC0 Instructions

Fields

Description
Read /
Write Reset State ComplianceName Bits

Fill 61..55 These bits are ignored on write and return zero on read.
The boundaries of this field change as a function of th
value of PABITS. See Table 9.1 for more information.

R 0 Required if RI
and XI field are

not imple-
mented.

RI 63 Read Inhibit. If this bit is set in a TLB entry, an attempt,
other than a MIPS16 PC-relative load, to read data on
the virtual page causes a TLB Invalid or a TLBRI excep-
tion, even if the V (Valid) bit is set. The RI bit is writable
only if the RIE bit of the PageGrain register is set. If
the RIE bit of PageGrain is not set, the RI bit of
EntryLo0/EntryLo1 is set to zero on any write to the
register, regardless of the value written.

This bit is optional and its existence is denoted by the
Config3RXI or Config3SM register fields

R/W 0 Required by
SmartMIPS

ASE; Optional
otherwise

If not imple-
mented, this bit
location is part
of the Fill field

Table 9.6 EntryLo0, EntryLo1 Register Field Descriptions in Release 2 of the Architecture

Fields

Description
Read /
Write Reset State ComplianceName Bits

135MIPS® Architecture For Programmers Volume III: The MIPS64® and microMIPS64™ Privileged Resource Architecture, Re-
vision 5.04

XI 62 Execute Inhibit. If this bit is set in a TLB entry, an
attempt to fetch an instruction or to load MIPS16 PC-rel-
ative data from the virtual page causes a TLB Invalid or
a TLBXI exception, even if the V (Valid) bit is set. The
XI bit is writable only if the XIE bit of the PageGrain
register is set. If the XIE bit of PageGrain is not set, the
XI bit of EntryLo0/EntryLo1 is set to zero on any write
to the register, regardless of the value written.

This bit is optional and its existence is denoted by the
Config3RXI or Config3SM register fields

R/W 0 Required by
SmartMIPS

ASE; Optional
otherwise

If not imple-
mented, this bit
location is part
of the Fill field

PFNX 54..30 Page Frame Number Extension. If the processor is
enabled to support large physical addresses
(Config3LPA = 1 and PageGrainELPA = 1), this field i
concatenated with the PFN field to form the full pag
frame number corresponding to the physical address,
thereby providing up to 59 bits of physical address.
If the processor is enabled to support 1KB pages
(Config3SP = 1 and PageGrainESP = 1), the combined
PFNX || PFN field corresponds to bits PABITS-1..10 of
the physical address (the fiel is shifted left by 2 bits rel-
ative to the Release 1 definition to ma e room for
PA11 10).
If the processor is not enabled to support 1KB pages
(Config3SP = 0 or PageGrainESP = 0), the combined
PFNX || PFN fields corresponds to 0b0 || bits
PABITS-1..12 of the physical address (the field i
unshifted and the upper two bits must be written as
zero).
The boundaries of this field change as a function of th
value of PABITS. See Table 9.1 for more information.
If support for large physical addresses is not enabled
(Config3LPA = 0 or PageGrainELPA = 0), these bits are
ignored on write and return 0 on read, thereby providing
full backward compatibility with implementations of
Release 1 of the Architecture.

R/W 0 Optional

Table 9.7 EntryLo0, EntryLo1 Register Field Descriptions in Release 3 of the Architecture when
Accessed with DMFC0 and DMTC0 Instructions (Continued)

Fields

Description
Read /
Write Reset State ComplianceName Bits

9.6 EntryLo0, EntryLo1 (CP0 Registers 2 and 3, Select 0)

MIPS® Architecture For Programmers Volume III: The MIPS64® and microMIPS64™ Privileged Resource Architecture, Revi-
sion 5.04 136

For the MTC0 and MFC0 instructions in a MIPS64 Release 3 implementation, the RI and XI bits are visible at their
MIPS32 locations. This allows for backward compatibility with MIPS32 when using the RI/XI protection bits.

MTC0 on a MIPS64 Release 3 machine will cause all zeros to be written to the PFNX fiel (this fiel is not visible by
software via the MTC0/MFC0 instructions).

PFN 29..6 Page Frame Number. This field contains least-signif
cant bits of the physical page number corresponding to
the virtual page. If the processor is enabled to support
large physical addresses, the PFNX field describe
above is concatenated with the PFN fiel to form the full
page frame number. If the processor is not enabled to
support large physical addresses, the entire page frame
number is represented by this field. See the descriptio
of the PFNX field ab ve for more information.
If the processor is enabled to support 1KB pages
(Config3SP = 1 and PageGrainESP = 1), the PFN fiel
corresponds to bits 33..10 of the physical address (the
field is shifted left by 2 bits relat ve to the Release 1 def-
inition to make room for PA11 10).
If the processor is not enabled to support 1KB pages
(Config3SP = 0 or PageGrainESP = 0), the PFN fiel
corresponds to bits 35..12 of the physical address.
The boundaries of this field change as a function of th
value of PABITS. See Table 9.1 for more information.

R/W Undefine Required

C 5..3 The definitio of this fiel is unchanged from Release 1.
See Table 9.5 above and Table 9.2 below.

R/W Undefine Required

D 2 The definitio of this fiel is unchanged from Release 1.
See Table 9.5 above.

R/W Undefine Required

V 1 The definitio of this fiel is unchanged from Release 1.
See Table 9.5 above.

R/W Undefine Required

G 0 The definitio of this fiel is unchanged from Release 1.
See Table 9.5 above.

R/W Undefine Required (TLB
MMU)

Figure 9-6 EntryLo0, EntryLo1 Register Format in Release 3 of the Architecture when Accessed
using MFC0 and MTC0 Instructions

63 32

SignExt

RI XI PFN C D V G

31 30 29 6 5 3 2 1 0

Table 9.7 EntryLo0, EntryLo1 Register Field Descriptions in Release 3 of the Architecture when
Accessed with DMFC0 and DMTC0 Instructions (Continued)

Fields

Description
Read /
Write Reset State ComplianceName Bits

137MIPS® Architecture For Programmers Volume III: The MIPS64® and microMIPS64™ Privileged Resource Architecture, Re-
vision 5.04

Table 9.8 EntryLo0, EntryLo1 Register Field Descriptions in Release 3 of the Architecture when
Accessed using MFC0 and MTC0 Instructions

Fields

Description
Read /
Write Reset State ComplianceName Bits

SignExt 63..32 The GPR bits are ignored on write. The PFNX field i
written with zeros.
On a read, the GPR bits are signed extended from the RI
bit.

R 0 Required.

RI 31 Read Inhibit. If this bit is set in a TLB entry, an attempt,
other than a MIPS16 PC-relative load, to read data on
the virtual page causes a TLB Invalid or a TLBRI excep-
tion, even if the V (Valid) bit is set. The RI bit is writable
only if the RIE bit of the PageGrain register is set. If
the RIE bit of PageGrain is not set, the RI bit of
EntryLo0/EntryLo1 is set to zero on any write to the
register, regardless of the value written.

This bit is optional and its existence is denoted by the
Config3RXI or Config3SM register fields

R/W 0 Required by
SmartMIPS

ASE; Optional
otherwise

If not imple-
mented, this bit
location is part
of the Fill field

XI 30 Execute Inhibit. If this bit is set in a TLB entry, an
attempt to fetch an instruction or to load MIPS16 PC-rel-
ative data from the virtual page causes a TLB Invalid or
a TLBXI exception, even if the V (Valid) bit is set. The
XI bit is writable only if the XIE bit of the PageGrain
register is set. If the XIE bit of PageGrain is not set, the
XI bit of EntryLo0/EntryLo1 is set to zero on any write
to the register, regardless of the value written.

This bit is optional and its existence is denoted by the
Config3RXI or Config3SM register fields

R/W 0 Required by
SmartMIPS

ASE; Optional
otherwise

If not imple-
mented, this bit
location is part
of the Fill field

PFN 29..6 Page Frame Number. This field contains least-signif
cant bits of the physical page number corresponding to
the virtual page. If the processor is enabled to support
large physical addresses, the PFNX field, describe
above is concatenated with the PFN fiel to form the full
page frame number. If the processor is not enabled to
support large physical addresses, the entire page frame
number is represented by this field. See the descriptio
of the PFNX field ab ve for more information.
If the processor is enabled to support 1KB pages
(Config3SP = 1 and PageGrainESP = 1), the PFN fiel
corresponds to bits 33..10 of the physical address (the
field is shifted left by 2 bits relat ve to the Release 1 def-
inition to make room for PA11 10).
If the processor is not enabled to support 1KB pages
(Config3SP = 0 or PageGrainESP = 0), the PFN fiel
corresponds to bits 35..12 of the physical address.
The boundaries of this field change as a function of th
value of PABITS. SeeTable 9.1 for more information.

R/W Undefine Required

9.6 EntryLo0, EntryLo1 (CP0 Registers 2 and 3, Select 0)

MIPS® Architecture For Programmers Volume III: The MIPS64® and microMIPS64™ Privileged Resource Architecture, Revi-
sion 5.04 138

Table 9.1 shows the movement of the Fill, PFNX, and PFN fields as a function of 1KB page support enabled, and th
value of PABITS.Note that in implementations of the Architecture, PABITS can never be larger than 36 bits and there
is no support for 1KB pages, so only the second row of the table applies in Release 1.

C 5..3 The definitio of this fiel is unchanged from Release 1.
See Table 9.5 above and Table 9.2 below.

R/W Undefine Required

D 2 The definitio of this fiel is unchanged from Release 1.
See Table 9.5 above.

R/W Undefine Required

V 1 The definitio of this fiel is unchanged from Release 1.
See Table 9.5 above.

R/W Undefine Required

G 0 The definitio of this fiel is unchanged from Release 1.
See Table 9.5 above.

R/W Undefine Required (TLB
MMU)

Table 9.8 EntryLo0, EntryLo1 Register Field Descriptions in Release 3 of the Architecture when
Accessed using MFC0 and MTC0 Instructions (Continued)

Fields

Description
Read /
Write Reset State ComplianceName Bits

139MIPS® Architecture For Programmers Volume III: The MIPS64® and microMIPS64™ Privileged Resource Architecture, Re-
vision 5.04

.

Programming Note:

In implementations of Release 2 of the Architecture (and subsequent releases), the PFNX and PFN field of both the
EntryLo0 and EntryLo1 registers must be written with zero, and the TLB must be flushe before each instance in
which the value of the PageGrain register is changed. This operation must be carried out while running in an
unmapped address space. The operation of the processor is UNDEFINED if this sequence is not done.

Table 9.2 lists the encoding of the C field of th EntryLo0 and EntryLo1 registers and the K0 field of th Config regis-
ter. An implementation may choose to implement a subset of the cache coherency attributes shown, but must imple-
ment at least encodings 2 and 3 such that software can always depend on these encodings working appropriately. In
other cases, the operation of the processor is UNDEFINED if software uses a TLB mapping (either for an instruction
fetch or for a load/store instruction) which was created with a C field encoding which is RESE VED for the imple-
mentation.

Table 9.1 EntryLo Field Widths as a Function of PABITS

1KB Page
Support

Enabled? PABITS Value

Corresponding EntryLo Field Bit Ranges
Required
ReleaseFill Field PFNX Field PFN Field

No 59 ≥ PABITS > 36 63..(53-(59-PABITS))
Example:

63..53 if PABITS = 59
63..31 if PABITS = 37

(52-(59-PABITS))..30E
xample:

52..30 if PABITS = 59
30..30 if PABITS = 37

EntryLo52 30 = PA59 36

29..6
EntryLo29 6 = PA35 12

Release 5

36 ≥ PABITS > 12 63..(30-(36-PABITS))
Example:

63..30 if PABITS = 36
63..7 if PABITS = 13

Displaced by the Fill
Field

(29-(36-PABITS))..6
Example:

29..6 if PABITS = 36
6..6 if PABITS = 13

EntryLo29 6 = PA35 12

Release 1

Yes 59 ≥ PABITS > 34 63..(55-(59-PABITS))
Example:

63..55 if PABITS = 59
63..31 if PABITS = 35

(54-(59-PABITS))..30
Example:

54..30if PABITS = 59
31..30 if PABITS = 35

EntryLo54 30 = PA59 34

29..6
EntryLo29 6 = PA33 10

Release 5

34 ≥ PABITS > 10 63..(30-(34-PABITS))
Example:

63..30 if PABITS = 34
63..7 if PABITS = 11

Displaced by the Fill
Field

(29-(34-PABITS))..6
Example:

29..6 if PABITS = 34
6..6 if PABITS = 11

EntryLo29 6 = PA33 10

Release 2

9.6 EntryLo0, EntryLo1 (CP0 Registers 2 and 3, Select 0)

MIPS® Architecture For Programmers Volume III: The MIPS64® and microMIPS64™ Privileged Resource Architecture, Revi-
sion 5.04 140

Table 9.2 lists the required and optional encodings for the cacheability and coherency attributes.

Table 9.2 Cacheability and Coherency Attributes

C(5:3) Value
Cacheability and Coherency Attributes

With Historical Usage Compliance

0 • Available for implementation-dependent use Optional

1 • Available for implementation-dependent use Optional

2 • Uncached Required

3 • Cacheable Required

4 • Available for implementation-dependent use Optional

5 • Available for implementation-dependent use Optional

6 • Available for implementation-dependent use Optional

7 • Available for implementation-dependent use Optional

141MIPS® Architecture For Programmers Volume III: The MIPS64® and microMIPS64™ Privileged Resource Architecture, Re-
vision 5.04

9.7 Context Register (CP0 Register 4, Select 0)

Compliance Level: Required for TLB-based MMUs; Optional otherwise.

The Context register is a read/write register containing a pointer to an entry in the page table entry (PTE) array. This
array is an operating system data structure that stores virtual-to-physical translations. During a TLB miss, the operat-
ing system loads the TLB with the missing translation from the PTE array. The Context register is primarily intended
for use with the TLB Refill handle , but is also loaded by hardware on an XTLB Refill and may be used by soft are
in that handler. The Context register duplicates some of the information provided in the BadVAddr register.

If Config3CTXTC =0 and Config3SM =0 then the Context register is organized in such a way that the operating system
can directly reference a 16-byte structure in memory that describes the mapping. For PTE structures of other sizes,
the content of this register can be used by the TLB refill handler after appropriate shifting and masking

If Config3CTXTC =0 and Config3SM =0 then a TLB exception (TLB Refill, XTLB Refill, TLB valid, or TLB Modi-
fied) causes bits A31..13 of the virtual address to be written into the BadVPN2 field of th Context register. The
PTEBase field is written and used by the operating system

The BadVPN2 field of th Context register is not defined after an address error xception and this field may be modi
fied by hard are during the address error exception sequence.

Figure 9.7 shows the format of the Context Register when Config3CTXTC =0 and Config3SM =0; Table 9.3 describes
the Context register field Config3CTXTC =0 and Config3SM =0.

If Config3CTXTC =1 or Config3SM =1 then the pointer implemented by the Context register can point to any power-of-
two-sized PTE structure within memory. This allows the TLB refill handler to use the pointer without additiona

Figure 9.7 Context Register Format when Config3CTXTC=0 and Config3SM=0
63 23 22 4 3 0

PTEBase BadVPN2 0

Table 9.3 Context Register Field Descriptions when Config3CTXTC=0 and Config3SM=0

Fields

Description
Read /
Write Reset State ComplianceName Bits

PTEBase 63..23 This field is for use by the operating system and i
normally written with a value that allows the operat-
ing system to use the Context Register as a pointer
into the current PTE array in memory.

R/W Undefine Required

BadVPN2 22..4 This fiel is written by hardware on a TLB exception.
It contains bits VA31 13 of the virtual address that
caused the exception.

R Undefine Required

0 3..0 Must be written as zero; returns zero on read. 0 0 Reserved

9.7 Context Register (CP0 Register 4, Select 0)

MIPS® Architecture For Programmers Volume III: The MIPS64® and microMIPS64™ Privileged Resource Architecture, Revi-
sion 5.04 142

shifting and masking steps. Depending on the value in the ContextConfig register, it may point to an 8-byte pair of 32-
bit PTEs within a single-level page table scheme, or to a firs level page directory entry in a two-level lookup scheme.

If Config3CTXTC =1 or Config3SM =1 then the a TLB exception (Refill, I valid, or Modified) causes bits A31:31-((X-

Y)-1) to be written to a variable range of bits “(X-1):Y” of the Context register, where this range corresponds to the
contiguous range of set bits in the ContextConfig register. Bits 63:X are R/W to software, and are unaffected by the
exception. Bits Y-1:0 are unaffected by the exception. If X = 23 and Y = 4, i.e. bits 22:4 are set in ContextConfig, the
behavior is identical to the standard MIPS64 Context register (bits 22:4 are filled with A31:13). Although the field
have been made variable in size and interpretation, the MIPS64 nomenclature is retained. Bits 63:X are referred to as
the PTEBase field, and bits X-1:Y are referred to a BadVPN2.

If Config3SM =1 then Bits Y-1:0 will always read as 0.

The value of the Context register is UNPREDICTABLE following a modification of the contents of th
ContextConfig register.

Figure 9.8 shows the format of the Context Register when Config3CTXTC =1 or Config3SM =1; Table 9.4 describes the
Context register field Config3CTXTC =1 or Config3SM =1.

Figure 9.8 Context Register Format when Config3CTXTC=1 or Config3SM=1
63 X X-1 Y Y-1 0

PTEBase BadVPN2 0

Table 9.4 Context Register Field Descriptions when Config3CTXTC=1 or Config3SM=1

Fields

Description
Read /
Write

Reset
State ComplianceName Bits

PTEBase Variable, 63:X where
X in {31..0}.
May be null.

This field is for use by the operating syste
and is normally written with a value that
allows the operating system to use the
Context Register as a pointer to an array of
data structures in memory corresponding to
the address region containing the virtual
address which caused the exception.

R/W Undefine Required

BadVPN2 Variable, (X-1):Y
where
X in {32..1} and
Y in {31..0}.
May be null.

This field is written by hard are on a TLB
exception. It contains bits VA31:31-((X-Y)-1)
of the virtual address that caused the excep-
tion.

R Undefine Required

143MIPS® Architecture For Programmers Volume III: The MIPS64® and microMIPS64™ Privileged Resource Architecture, Re-
vision 5.04

0 Variable, (Y-1):0
where
Y in {31:1}.
May be null.

Must be written as zero; returns zero on read. R
or

R/W

(R/W
only

allowed
for

Config
CTXT=1)

0 (if R)
or

Undefine
(if R/W)

Reserved

Table 9.4 Context Register Field Descriptions when Config3CTXTC=1 or Config3SM=1

Fields

Description
Read /
Write

Reset
State ComplianceName Bits

9.7 Context Register (CP0 Register 4, Select 0)

MIPS® Architecture For Programmers Volume III: The MIPS64® and microMIPS64™ Privileged Resource Architecture, Revi-
sion 5.04 144

145MIPS® Architecture For Programmers Volume III: The MIPS64® and microMIPS64™ Privileged Resource Architecture, Re-
vision 5.04

9.8 ContextConfig Register (CP0 Register 4, Select 1)

Compliance Level: Optional.

The ContextConfig register defines the bits of th Context register into which the bits starting from 31 of the virtual
address causing a TLB exception will be written, and how many bits of that virtual address will be extracted. Bits
above the selected field of th Context register are R/W to software and serve as the PTEBase field. Bits bel w the
selected field of th Context register will be unaffected by TLB exceptions.

The field to contain the virtual address ind x is defined by a single block of contiguous non-zero bits within th
ContextConfig register’s VirtualIndex field. A y zero bits to the right of the least-significant one bit cause the corre
sponding Context register bits to be unaffected by TLB exceptions. Any zero bits to the left of the most- significan
one bit cause the corresponding Context register bits to be R/W to software and unaffected by TLB exceptions.

If Config3SM is set, then any zero bits to the right of the least significan one bit causes the corresponding Context reg-
ister bits to be read as zero.

It is permissible to implement a subset of the ContextConfig register, in which some number of bits are read-only and
set to one or zero as appropriate. Software can determine whether a specific setting is implemented by writing tha
value into the register and reading back the register value. If the read value matches the original written value exactly,
then the setting is supported. It is implementation specific what alue is read back when the setting is not imple-
mented except that the read value does not match the original written value. All implementations of the ContextConfig
register must allow for the emulation of the MIPS64/microMIPS64 fi ed Context register configuration

This paragraph describes restrictions on how the ContextConfig register may be programmed. The set bits of
ContextConfig define th BadVPN2 field within th Config register. The BadVPN2 field cannot contain address bit
which are used to index a memory location within the even-odd page pairs used by the JTLB entries. This limits the
least significant writeable bit withi ContextConfig to the bits that represents BadVPN2 of the smallest implemented
page size. For example, if the smallest implemented page size is 4KB, virtual address bit 13 is the least significan bit
of the BadVPN2 field. Another xample: if 1KB was the smallest implemented page size then the least significan
writeable bit within ContextConfig would correspond to virtual address bit 11.

A value of all zeroes means that the full 64 bits of the Context register are R/W for software and unaffected by TLB
exceptions.

The ContextConfig register is optional and its existence is denoted by the Config3CTXTC or Config3SM register fields

Figure 9.9 shows the formats of the ContextConfig Register; Table 9.5 describes the ContextConfig register fields

9.8 ContextConfig Register (CP0 Register 4, Select 1)

MIPS® Architecture For Programmers Volume III: The MIPS64® and microMIPS64™ Privileged Resource Architecture, Revi-
sion 5.04 146

Figure 9.9 ContextConfig Register Format

Table 9.6 describes some useful ContextConfig values.

31 0

VirtualIndex

Table 9.5 ContextConfig Register Field Descriptions

Fields

Description
Read /
Write

Reset
State ComplianceName Bits

VirtualIndex 31:0 A mask of 0 to 32 contiguous 1 bits in this field cause
the corresponding bits of the Context register to be writ-
ten with the bits starting from 31 of the virtual address
causing a TLB exception.
Behavior of the processor is UNDEFINED if non-con-
tiguous 1 bits are written into the register field

R/W 0x007ffff0 Required

Table 9.6 Recommended ContextConfig Values

Value
Page Table

Organization Page Size PTE Size Compliance

0x007ffff0 Single Level 4K 64 bits/page REQUIRED

0x007ffff8 Single Level 2K 32 bits/page RECOMMENDED

147MIPS® Architecture For Programmers Volume III: The MIPS64® and microMIPS64™ Privileged Resource Architecture, Re-
vision 5.04

9.9 UserLocal Register (CP0 Register 4, Select 2)

Compliance Level: Recommended.

The UserLocal register is a read-write register that is not interpreted by the hardware and conditionally readable via
the RDHWR instruction.

If the MIPS® MT Module is implemented, the UserLocal register is instantiated per TC.

This register only exists if the Config3ULRI register field is set.

Figure 9.10 shows the format of the UserLocal register; Table 9.7 describes the UserLocal register fields

Programming Notes

Privileged software may write this register with arbitrary information and make it accessable to unprivileged software
via register 29 (ULR) of the RDHWR instruction. To do so, bit 29 of the HWREna register must be set to a 1 to enable
unprivileged access to the register. In some operating environments, the UserLocal register contains a pointer to a
thread-specific storage block that is obtained via the RDHWR r gister.

Figure 9.10 UserLocal Register Format
63 0

UserInformation

Table 9.7 UserLocal Register Field Descriptions

Fields

Description
Read/
Write Reset State ComplianceName Bits

UserInfor-
mation

63..0 This field contains soft are information that is not inter-
preted by the hardware.

R/W Undefine Required

9.10 XContextConfig Register (CP0 Register 4, Select 3)

MIPS® Architecture For Programmers Volume III: The MIPS64® and microMIPS64™ Privileged Resource Architecture, Revi-
sion 5.04 148

9.10 XContextConfig Register (CP0 Register 4, Select 3)

Compliance Level: Optional.

The XContextConfig register defines the bits of th XContext register into which the high order bits (starting at SEG-
BITS-1) of the virtual address causing a TLB exception will be written, and how many bits of that virtual address will
be extracted. Bits above the selected field of th XContext register serve as the PTEBase and R fields. Th PTEBase
field is R/W to soft are while the R field is written by hard are. Bits below the selected field of th Context register
will be unaffected by TLB exceptions.

The field to contain the virtual address ind x is defined by a single block of contiguous non-zero bits within th
XContextConfig register’s VirtualIndex field. A y zero bits to the right of the least significant one bit cause the corre
sponding XContext register bits to be unaffected by hardware. Any zero bits to the left of the most significant one bi
designate the location of the R field and cause the remainin XContext register bits to be R/W to software and unaf-
fected by TLB exceptions.

It is permissible to implement a subset of the XContextConfig register, in which some number of bits are read-only
and set to one or zero as appropriate. Software can determine whether a specific setting is implemented by writin
that value into the register and reading back the register value. If the read value matches the original written value
exactly, then the setting is supported. It is implementation specific what alue is read back when the setting is not
implemented except that the read value does not match the original written value. All implementations of the
XContextConfig register must allow for the emulation of the MIPS64/microMIPS64 fi ed XContext register configu
ration.

This paragraph describes restrictions on how the XContextConfig register may be programmed. The set bits of
XContextConfig define the BadVPN2 field within t XConfig register. The BadVPN2 field cannot contain addres
bits which are used to index a memory location within the even-odd page pairs used by the JTLB entries. This limits
the least significant writeable bit withi XContextConfig to the bits that represents BadVPN2 of the smallest
implemented page size. For example, if the smallest implemented page size is 4KB, virtual address bit 13 is the least
significan bit of the BadVPN2 field Another example: if 1KB was the smallest implemented page size then the least
significant writeable bit withi XContextConfig would be the bit corresponding to virtual address bit 11.

In the MIPS64 and microMIPS64 architectures, implementations are allowed to implement virtual address segments
which are less than the full 64-bits and have regions in the memory map which are not accessible (accesses to such
regions would cause Address Error exceptions). The symbol SEGBITS is used within this document to denote the
size of the accessible address segments.The XConfig register is meant to be a pointer to a page table data-structure.
That page table must reside in memory which is accessible. For that reason, the most significan address bit within the
BadVPN2 fiel can not be larger than the value of SEGBITS-1. This restricts the most significan writeable bit within
XContextConfig to the bit location that corresponds to VASEGBITS-1 or smaller.

A value of all zeroes means that the full 64 bits of the XContext register are R/W for software and unaffected by TLB
exceptions.

The XContextConfig register is optional and its existence is denoted by the Config3CTXTC or Config3SM register fields

The PTEBase field of Context and XContext register can be of different width and hold different address pointer val-
ues. For this reason, the XContextConfig and ContextConfig registers must be implemented separately, not sharing any
storage.

Figure 9.11 shows the formats of the XContextConfig Register; Table 9.8 describes the XContextConfig register fields

149MIPS® Architecture For Programmers Volume III: The MIPS64® and microMIPS64™ Privileged Resource Architecture, Re-
vision 5.04

Figure 9.11 XContextConfig Register Format
63 0

VirtualIndex

Table 9.8 XContextConfig Register Field Descriptions

Fields

Description
Read /
Write Reset State ComplianceName Bits

VirtualIndex 63:0 A mask of 0 to 64 contiguous 1 bits in this field cause
the corresponding bits of the XContext register to be
written with the high-order bits starting at SEGBITS-1
of the virtual address causing a TLB exception.
Behavior of the processor is UNDEFINED if non-con-
tiguous 1 bits are written into the register field

R/W bits SEG-
BITS-13+3:4

are set
(these are the

bits corre-
sponding to

VASEG-

BITS-1:13)

Required

9.11 PageMask Register (CP0 Register 5, Select 0)

MIPS® Architecture For Programmers Volume III: The MIPS64® and microMIPS64™ Privileged Resource Architecture, Revi-
sion 5.04 150

9.11 PageMask Register (CP0 Register 5, Select 0)

Compliance Level: Required for TLB-based MMUs; Optional otherwise.

The PageMask register is a read/write register used for reading from and writing to the TLB. It holds a comparison
mask that sets the variable page size for each TLB entry, as shown in Table 9.10. Figure 9.12 shows the format of the
PageMask register; Table 9.9 describes the PageMask register fields

Figure 9.12 PageMask Register Format if ConfigBPG=0
31 29 28 13 12 11 10 0

0 Mask MaskX 0

Figure 9.13 PageMask Register Format if ConfigBPG=1
63 60 59 32

0 Mask

31 13 12 11 10 0

Mask MaskX 0

Table 9.9 PageMask Register Field Descriptions

Fields

Description
Read /
Write Reset State ComplianceName Bits

Mask if
Confi BPG=0

28..13
if

Confi BPG=1
59..13

The Mask field is a bit mask in which a “1” bi
indicates that the corresponding bit of the virtual
address should not participate in the TLB match.

R/W Undefine Required

151MIPS® Architecture For Programmers Volume III: The MIPS64® and microMIPS64™ Privileged Resource Architecture, Re-
vision 5.04

MaskX 12..11 In Release 2 of the Architecture (and subsequent
releases), the MaskX fiel is an extension to the
Mask fiel to support 1KB pages with definitio
and action analogous to that of the Mask field
defined ab ve.
If 1KB pages are enabled (Config3SP = 1 and
PageGrainESP = 1), these bits are writable and
readable, and their values are copied to and from
the TLB entry on a TLB write or read, respec-
tively.
If 1KB pages are not enabled (Config3SP = 0 or
PageGrainESP = 0), these bits are not writable,
return zero on read, and the effect on the TLB
entry on a write is as if they were written with
the value 0b11.
In Release 1 of the Architecture, these bits must
be written as zero, return zero on read, and have
no effect on the virtual address translation.

R/W 0
(See Description)

Required (Release
2)

0 if
Confi BPG=0

31..29,
if

Confi BPG=1
63..60,

10..0

Ignored on write; returns zero on read. R 0 Required

Table 9.10 Values for the Mask and MaskX1 Fields of the PageMask Register

Page Size Values for Mask field
(lsb of value is located at

PageMask13)
Values for MaskX1

field

1 KByte 0x0 0x0

4 KByte 0x0 0x3

16 KByte 0x3 0x3

64 KByte 0xF 0x3

256 KByte 0x3F 0x3

1 MByte 0xFF 0x3

4 MByte 0x3FF 0x3

Table 9.9 PageMask Register Field Descriptions

Fields

Description
Read /
Write Reset State ComplianceName Bits

9.11 PageMask Register (CP0 Register 5, Select 0)

MIPS® Architecture For Programmers Volume III: The MIPS64® and microMIPS64™ Privileged Resource Architecture, Revi-
sion 5.04 152

It is implementation-dependent how many of the encodings described in Table 9.10are implemented. All processors
must implement the 4KB page size. If a particular page size encoding is not implemented by a processor, a read of
the PageMask register must return zeros in all bits that correspond to encodings that are not implemented, thereby
potentially returning a value different than that written by software.

Software may determine which page sizes are supported by writing all ones to the PageMask register, then reading
the value back. If a pair of bits reads back as ones, the processor implements that page size. The operation of the pro-
cessor is UNDEFINED if software loads the Mask fiel with a value other than one of those listed in Table 9.10, even
if the hardware returns a different value on read. Hardware may depend on this requirement in implementing hard-
ware structures

Config3SP Programming Note:

In implementations of Release 2 (and subsequent releases) of the Architecture, the MaskX fiel of the PageMask reg-
ister must be written with 0b11 and the TLB must be flushe before each instance in which the value of the
PageGrain register is changed. This operation must be carried out while running in an unmapped address space. The
operation of the processor is UNDEFINED if this sequence is not done.

16 MByte 0xFFF 0x3

64 MByte 0x3FFF 0x3

256 MByte 0xFFFF 0x3

1 GByte2 0x3FFFF 0x3

4 GByte2 0xFFFFF 0x3

16 GByte2 0x3FFFFF 0x3

64GByte2 0xFFFFFF 0x3

256 GByte2 0x3FFFFFF 0x3

1 TByte2 0xFFFFFFF 0x3

4 TByte2 0x3FFFFFFF 0x3

16 TByte2 0xFFFFFFFF 0x3

64 TByte2 0x3FFFFFFFF 0x3

256 TByte2 0xFFFFFFFFF 0x3

1. PageMask12 11 = PageMaskMaskX exists only on implementations of Release 2 of the architec-
ture and are treated as if they had the value 0b11 if 1K pages are not enabled (Config3SP = 0 or
PageGrainESP = 0).

2. .This page size is available only if Config BPG=1. The left-most bits of the Mask field neces
sary to represent this page size exist only if Config BPG=1

Table 9.10 Values for the Mask and MaskX1 Fields of the PageMask Register

Page Size Values for Mask field
(lsb of value is located at

PageMask13)
Values for MaskX1

field

153MIPS® Architecture For Programmers Volume III: The MIPS64® and microMIPS64™ Privileged Resource Architecture, Re-
vision 5.04

9.12 PageGrain Register (CP0 Register 5, Select 1)

Compliance Level: Required for implementations of Release 2 (and subsequent releases) of the Architecture that
include TLB-based MMUs and support 1KB pages, the XI/RI TLB protection bits, multiple types of Machine Check
exceptions, or large physical addresses; Required for SmartMIPS™ ASE; Required for XPA (Config3LPA=1);
Optional otherwise.

The PageGrain register is a read/write register used for enabling 1KB page support, the XI/RI TLB protection bits,
reporting the type of Machine Check exception, and Extended Physical Addressing, and for large physical address
support. The PageGrain register is present in both the SmartMIPS™ ASE and in Release 2 (and subsequent releases)
of the Architecture. As such, the description below only describes the field relevant to Release 2 of the Architecture.
In implementations of both Release 2 of the Architecture and the SmartMIPS™ ASE, the ASE definition take prece-
dence. Figure 9-14 shows the format of the PageGrain register; Table 9.11 describes the PageGrain register fields

Figure 9-14 PageGrain Register Format
31 30 29 28 27 26 25 13 12 8 7 5 4 0

RIE XIE ELPA ESP IEC S32 0 ASE 0 MCCause

Table 9.11 PageGrain Register Field Descriptions

Fields

Description
Read /
Write Reset State ComplianceName Bits

RIE 31 Read Inhibit Enable.

This bit is optional. The existence of this bit is denoted
by either the SM or RXI bits in Config3. If this bit is not
settable, then the RI bit in the EntryLo* registers is not
implemented.

R/W
or
R

0 Required by
SmartMIPS

ASE;
Optional
otherwise

Encoding Meaning

0 RI bit of the EntryLo0 and EntryLo1
registers is disabled and not writeable
by software.

1 RI bit of the EntryLo0 and EntryLo1
registers is enabled.

9.12 PageGrain Register (CP0 Register 5, Select 1)

MIPS® Architecture For Programmers Volume III: The MIPS64® and microMIPS64™ Privileged Resource Architecture, Revi-
sion 5.04 154

XIE 30 Execute Inhibit Enable.

This bit is optional. The existence of this bit is denoted
by either the SM or RXI bits in the Config3 register. If
this bit is not settable, the XI bit in the EntryLo* registers
is not implemented.

R/W
or
R

0 Required by
SmartMIPS

ASE;
Optional
otherwise

ASE 12..8 These fields are control features of the SmartMIPS
ASE and are not used in implementations of Release 2 of
the Architecture unless such an implementation also
implements the SmartMIPS™ ASE.

0 0 Required

ELPA 29 Enables support for large physical addresses.

If this bit is a 1, the following changes occur to Copro-
cessor 0 registers:
• The PFNX fiel of the EntryLo0 and EntryLo1 regis-

ters is writable and concatenated with the PFN fiel to
form the full page frame number.

If Config3LPA = 0, large physical addresses are not
implemented, and this bit is ignored on write and returns
zero on read.
For implementations of Release 1 of the Architecture,
this bit returns zero on read.

R/W 0 Required
(Release 2)

Table 9.11 PageGrain Register Field Descriptions (Continued)

Fields

Description
Read /
Write Reset State ComplianceName Bits

Encoding Meaning

0 XI bit of the EntryLo0 and EntryLo1
registers is disabled and not writeable
by software.

1 XI bit of the EntryLo0 and EntryLo1
registers is enabled.

Encoding Meaning

0 Large physical address support is not
enabled

1 Large physical address support is
enabled

155MIPS® Architecture For Programmers Volume III: The MIPS64® and microMIPS64™ Privileged Resource Architecture, Re-
vision 5.04

ESP 28 Enables support for 1KB pages.

If this bit is a 1, the following changes occur to copro-
cessor 0 registers:
• The PFN and PFNX fields of th EntryLo0 and

EntryLo1 registers hold the physical address down to
bit 10 (the field is shifted left by 2 bits from th
Release 1 definition)

• The MaskX field of th PageMask register is writ-
able and is concatenated to the right of the Mask fiel
to form the “don’t care” mask for the TLB entry.

• The VPN2X field of th EntryHi register is writable
and bits 12..11 of the virtual address.

• The virtual address translation algorithm is modifie
to reflect the smaller page size

If Config3SP = 0, 1KB pages are not implemented, and
this bit is ignored on write and returns zero on read.

R/W 0 Required

IEC 27 Enables unique exception codes for the Read-Inhibit and
Execute-Inhibit exceptions.

For implementations which follow the SmartMIPS ASE,
this bit is ignored by the hardware, meaning the
Read-Inhibit and Execute-Inhibit exceptions can only
use the TLBL exception code.

R/W 0 Required

0 25..13, 7..5 Must be written as zero; returns zero on read. 0 0 Reserved

Table 9.11 PageGrain Register Field Descriptions (Continued)

Fields

Description
Read /
Write Reset State ComplianceName Bits

Encoding Meaning

0 1KB page support is not enabled

1 1KB page support is enabled

Encoding Meaning

0 Read-Inhbit and Execute-Inhibit
exceptions both use the TLBL excep-
tion code.

1 Read-Inhibit exceptions use the
TLBRI exception code.
Execute-Inhibit exceptions use the
TLBXI exception code

9.12 PageGrain Register (CP0 Register 5, Select 1)

MIPS® Architecture For Programmers Volume III: The MIPS64® and microMIPS64™ Privileged Resource Architecture, Revi-
sion 5.04 156

Programming Note:

In implementations of Release 2 (and subsequent releases) of the Architecture, the following field must be written
with the specifie values, and the TLB must be flushe before each instance in which the value of the PageGrain reg-
ister is changed. This operation must be carried out while running in an unmapped address space. The operation of the
processor is UNDEFINED if this sequence is not done.

MCCause 4..0 Machine Check Cause . Only valid after a Machine
Check Exception.

R 0 Optional if
multiple types

of Machine
Check are
supported.;

Otherwise not
needed.

Field Required Value

EntryLo0PFN, EntryLo1PFN 0

EntryLo0PFNX, EntryLo1PFNX 0

PageMaskMaskX 0b11

EntryHiVPN2X 0

Table 9.11 PageGrain Register Field Descriptions (Continued)

Fields

Description
Read /
Write Reset State ComplianceName Bits

Encoding Meaning

0 No Machine Check Reported

1 Multiple Hit in TLB(s).

2 Multiple Hits in TLB(s) for specula-
tive accesses. The value in EPC might
not point to the faulting instruction.

3 For Dual VTLB and FTLB. A page
with EntryHiEHINV=0 is written into
FTLB and PageMask is not set to a
pagesize that is supported by the
FTLB.

4 For Dual VTLB and FTLB. A page
with EntryHiEHINV=0 is written into
FTLB but the VPN2 field is not con
sistent with the TLB set seletected by
the Index register.

5 For Hardware Page Table Walker and
Dual Page Mode of Directory Level
PTEs - first PTE accessed from mem
ory has PTEVld bit set but second
PTE accessed from memory does not
have PTEVld bit set.

6 For Hardware Page Table Walker and
derived Huge Page size is power-of-4
but Dual Page mode not implemented.

24-31 Implementation specifi

Others Reserved

157MIPS® Architecture For Programmers Volume III: The MIPS64® and microMIPS64™ Privileged Resource Architecture, Re-
vision 5.04

Note also that if PageGrain is changed, a hazard may be created between the instruction that writes PageGrain and a
subsequent CACHE instruction. This hazard must be cleared using the EHB instruction.

9.12 PageGrain Register (CP0 Register 5, Select 1)

MIPS® Architecture For Programmers Volume III: The MIPS64® and microMIPS64™ Privileged Resource Architecture, Revi-
sion 5.04 158

159MIPS® Architecture For Programmers Volume III: The MIPS64® and microMIPS64™ Privileged Resource Architecture, Re-
vision 5.04

9.13 SegCtl0 (CP0 Register 5, Select 2)

9.14 SegCtl1 (CP0 Register 5, Select 3)

9.15 SegCtl2 (CP0 Register 5, Select 4)

Compliance Level: Required for programmable memory segmentation; Optional otherwise.

The Segmentation Control registers allow configuring the memory s gmentation system. If implemented, the Seg-
mentation Configurations are a ways active.

The 32-bit Compatibility Address Space is split into six segments. The behavior of each region is controlled by a
Segment Configuration. Se Section 4.12 “Segmentation Control”.

The highest and lowest 2GB of the address space correspond to the 32-bit Compatibility Address Space.

Segmentation Control allows address-specific beh viors defined by the Pr vileged Resource Architecture to be modi-
fied or disabled

The Segmentation Control registers are instantiated per-VPE in an MT Module processor.

The existence of the Segmentation Control registers is denoted by the SC field within th Config3 register.

The EntryHi EHINV TLB invalidate feature is required by Segmentation Control. The legacy software method of rep-
resenting an invalid TLB entry by using an unmapped address value is not guaranteed to work.

For MIPS64 segments, the KX, SX and UX bits in Status are used together with the access control mode from the
Segment Configuration. The access control mode is set with th CFGAM field

Each Access Mode allowed by the Segment Configuration has an associated minimum pr vilege level (Table 9.17),
KERNEL (AM = UK, MK or XKP), SUPERVISOR (AM = MSK) or USER (AM = MUSK, MUSUK or UUSK).

Access to segments with a minimum privilege level of KERNEL are allowed when the processor is operating with
KERNEL privilege and the StatusKX bit is set.

Access to segments with a minimum privilege level of SUPERVISOR are allowed when the processor is operating
with SUPERVISOR privilege and the StatusSX, bit is set.

Access to segments with a minimum privilege level of USER are allowed when the processor is operating with USER
privilege and the StatusUX bit is set.

Figure 9.15 shows the format of the SegCtl0 Register.

9.15 SegCtl2 (CP0 Register 5, Select 4)

MIPS® Architecture For Programmers Volume III: The MIPS64® and microMIPS64™ Privileged Resource Architecture, Revi-
sion 5.04 160

Figure 9.15 SegCtl0 Register Format (CP0 Register 5, Select 2)

Table 9.12 SegCtl0 Register Field Descriptions

Figure 9.16 shows the format of the SegCtl1 Register.

Figure 9.16 SegCtl1 Register Format (CP0 Register 5, Select 3)

Table 9.13 SegCtl1 Register Field Descriptions

Figure 9.17 shows the format of the SegCtl2 Register.

63 32

0

31 16 15 0

CFG 1 CFG 0

Fields

Description
Read /
Write Reset StateName Bits

0 63..32 Reserved. Must be written as zero; returns zero on read. R0 0

CFG 1 31..16 Segment Configuration 1, se Table 9.16 R/W Implementa-
tion Depen-

dentCFG 0 15..0 Segment Configuration 0, se Table 9.16 R/W

63 62 61 59 58 32

0 XAM 0

31 16 15 0

CFG 3 CFG 2

Fields

Description
Read /
Write Reset StateName Bits

0 63..62 Reserved. Must be written as zero; returns zero on read. R0 0

XAM 61..59 xkphys region access mode, see Table 9.17 R/W Undefine

0 58..32 Reserved. Must be written as zero; returns zero on read. R0 0

CFG 3 31..16 Segment Configuration 3, se Table 9.16 R/W Implementa-
tion Depen-

dentCFG 2 15..0 Segment Configuration 2, se Table 9.16 R/W

161MIPS® Architecture For Programmers Volume III: The MIPS64® and microMIPS64™ Privileged Resource Architecture, Re-
vision 5.04

Figure 9.17 SegCtl2 Register Format (CP0 Register 5, Select 4)

Table 9.14 SegCtl2 Register Field Descriptions

9.15.1 xkphys access mode override

The SegCtl1XAM and SegCtl2XR fields all w region selectable redefinition of the de ault kernel-unmapped access
mode used by xkphys regions. An xkphys region n with associated bit SegCtl2XR[n]=1 uses the access mode speci-
fied b SegCtl1XAM. Thereby mapped xkphys regions use CCA information from the TLB. For regions where
SegCtl2XR[n]=0, default xkphys behavior is operational.

The SegCtl2XR field defines an enable bit for each xkphys r gion (xkphys consists of 8 2PABITS byte regions within
the 262 byte xkphys segment). The xkphys regions are indexed 0..7 in ascending address order in the SegCtl2XR field

On reset, theSegCtl1XAM field is undefined and t SegCtl2XR field is set to zero. This beh vior is designed to be
backward compatible with legacy microMIPS64 systems.

Table 9.15 describes the XR indexing of the microMIPS64 xkphys address space.

63 56 55 32

XR 0

31 16 15 0

CFG 5 CFG 4

Fields

Description
Read /
Write Reset StateName Bits

XR 63..56 xkphys region access mode enable. Each bit of XR[0..7]
define access mode enable for the corresponding region
of the xkphys segment.

R/W 0

CFG 5 31..16 Segment Configuration 5, se Table 9.16 R/W Implementa-
tion Depen-

dentCFG 4 15..0 Segment Configuration 4, se Table 9.16 R/W

Table 9.15 XR indexing of MIPS64 xkphys address regions

XR SegCtl263..56 Virtual Address range

7 63 0xBFFF FFFF FFFF FFFF
through

0xB800 0000 000 0000

6 62 0xB7FF FFFF FFFF FFFF
through

0xB000 0000 000 0000

5 61 0xAFFF FFFF FFFF FFFF
through

0xA800 0000 000 0000

9.15 SegCtl2 (CP0 Register 5, Select 4)

MIPS® Architecture For Programmers Volume III: The MIPS64® and microMIPS64™ Privileged Resource Architecture, Revi-
sion 5.04 162

Table 9.16 describes the CFG (Segment Configuration) fields defined in all CFG fields of th gmentation Control
registers.

Table 9.17 describes the access control modes specifiable in th CFGAM field

4 60 0xA7FF FFFF FFFF FFFF
through

0xA000 0000 000 0000

3 59 0x9FFF FFFF FFFF FFFF
through

0x9800 0000 000 0000

2 58 0x97FF FFFF FFFF FFFF
through

0x9000 0000 000 0000

1 57 0x8FFF FFFF FFFF FFFF
through

0x8800 0000 000 0000

0 56 0x87FF FFFF FFFF FFFF
through

0x8000 0000 0000 0000

Table 9.16 CFG (Segment Configuration) Field Description

Fields

Description
Read /
Write ComplianceName Bits

PA 15..9 Physical address bits for Segment, for use when
unmapped. See Section 4.12 “Segmentation Control”.
This field is pr visioned to support mapping of up to a
36-bit physical address.

R/W Required

0 8..7 Reserved. R0 Required

AM 6..4 Access control mode. See Table 9.17. R/W Required

EU 3 Error condition behavior. Segment becomes unmapped
and uncached when StatusERL=1.

R/W Required

C 2..0 Cache coherency attribute, for use when unmapped. As
defined by base architecture

R/W Required

Table 9.17 Segment Configuration Access Control Modes

Mode

Action when referenced from Operating
Mode

DescriptionUser mode
Supervisor

mode
Kernel
mode

UK 000 Address Error Address Error Unmapped Kernel-only unmapped region
e.g. kseg0, kseg1

Table 9.15 XR indexing of MIPS64 xkphys address regions

XR SegCtl263..56 Virtual Address range

163MIPS® Architecture For Programmers Volume III: The MIPS64® and microMIPS64™ Privileged Resource Architecture, Re-
vision 5.04

Table 9.18 describes a configuratio of Segmentation Control equivalent to legacy fi ed partitioning. This is a recom-
mended reset configuration for conformance with l gacy fi ed segmentation.

Table 9.19 describes the partitioning of the microMIPS64 address space.

MK 001 Address Error Address Error Mapped Kernel-only mapped region
e.g. kseg3

MSK 010 Address Error Mapped Mapped Supervisor and kernel mapped region
e.g. ksseg, sseg

MUSK 011 Mapped Mapped Mapped User, supervisor and kernel mapped region
e.g. useg, kuseg, suseg

MUSUK 100 Mapped Mapped Unmapped Used to implement a fully-mapped fla address space
in user and supervisor modes, with unmapped
regions which appear in kernel mode.

USK 101 Address Error Unmapped Unmapped Supervisor and kernel unmapped region
e.g. sseg in a fi ed mapping TLB.

UUSK 111 Unmapped Unmapped Unmapped Unrestricted unmapped region

Table 9.18 Segment Configuration (32-bit Compatibility Region) legacy reset state

CFG Segment AM PA C EU

0 kseg3 MK Undefine Undefine 0

1 ksseg, sseg MSK Undefine Undefine 0

2 kseg1 UK 0x000 2 0

3 kseg0 UK 0x000 3 0

4 kuseg, suseg, useg MUSK 0x002 Undefine 1

5 kuseg, suseg, useg MUSK 0x000 Undefine 1

Table 9.19 32-bit Compatibility Segment Configuration partitioning of MIPS64 address space

CFG VA63..61 VA31..29 Virtual Address range
Equivalent Segment

name(s)

0 111 111 0xFFFF FFFF FFFF FFFF
through

0xFFFF FFFF E000 0000

kseg3

1 111 110 0xFFFF FFFF DFFF FFFF
through

0xFFFF FFFF C000 0000

sseg, ksseg

2 111 101 0xFFFF FFFF BFFF FFFF
through

0xFFFF FFFF A000 0000

kseg1

Table 9.17 Segment Configuration Access Control Modes

Mode

Action when referenced from Operating
Mode

DescriptionUser mode
Supervisor

mode
Kernel
mode

9.15 SegCtl2 (CP0 Register 5, Select 4)

MIPS® Architecture For Programmers Volume III: The MIPS64® and microMIPS64™ Privileged Resource Architecture, Revi-
sion 5.04 164

3 111 100 0xFFFF FFFF 9FFF FFFF
through

0xFFFF FFFF 8000 0000

kseg0

4 000 011 0x0000 0000 7FFF FFFF
through

0x0000 0000 4000 0000

kuseg, useg, suseg

5 000 001..000 0x0000 0000 3FFF FFFF
through

0x0000 0000 0000 0000

Table 9.19 32-bit Compatibility Segment Configuration partitioning of MIPS64 address space

CFG VA63..61 VA31..29 Virtual Address range
Equivalent Segment

name(s)

165MIPS® Architecture For Programmers Volume III: The MIPS64® and microMIPS64™ Privileged Resource Architecture, Re-
vision 5.04

9.16 PWBase Register (CP0 Register 5, Select 5)

Compliance Level: Required for the hardware page walker feature.

The PWBase register contains the Page Table Base virtual address, used as the starting point for hardware page table
walking. It is used in combination with the PWField and PWSize registers.

The PWBase register is instantiated per-VPE in an MT Module processor.

The existence of this register is denoted when Config3PW=1.

The operation of page table walking is described in Section 4.14 “Hardware Page Table Walker”.

Figure 9.18 shows the format of the PWBase register; Table 9.20 describes the PWBase register fields

Figure 9.18 PWBase Register Format

9.17 PWField Register (CP0 Register 5, Select 6)

Compliance Level: Required for the hardware page walker feature.

The PWField register configures hard are page table walking for TLB refills. It is used in combination with th
PWBase and PWSize registers.

The hardware page walker feature supports multi-level page tables - up to four directory levels plus one page table
level. The lowest level of any page table system is an array of Page Table Entries (PTEs). This array is known as a
Page Table (PT) and is indexed using bits from the faulting address. A single-level page table system contains only a
single Page Table.

A multi-level page table system forms a tree structure - the lowest (leaf) elements of which are Page Table Entries.
Levels above the lowest Page Table level are known as Directories. A directory consists of an array of pointers. Each
pointer in a directory is either to another directory or to a Page Table.

The Page Table and the Directories are indexed by bits extracted from the faulting address. The PWBase register con-
tains the base address of the first Directory or age Table which will be accessed. The PWSize register specifies th
number of index bits to be used for each level. The PWField register specifies the location of the ind x fields in th
faulting address.

This register only exists if Config3PW=1.

The PWField register is instantiated per-VPE in an MT Module processor.

63 0

PWBase

Table 9.20 PWBase Register Field Descriptions

Fields

Description
Read /
Write

Reset
State ComplianceName Bits

PWBase 63..0 Page Table Base address pointer R/W 0 Required

9.17 PWField Register (CP0 Register 5, Select 6)

MIPS® Architecture For Programmers Volume III: The MIPS64® and microMIPS64™ Privileged Resource Architecture, Revi-
sion 5.04 166

If a synchronous exception condition is detected on a read operation during hardware page-table walking, the auto-
mated process is aborted and a TLB or XTLB Refill xception is taken.

Figure 9.19 shows the formats of the PWField Register; Table 9.21 describes the PWField register fields

167MIPS® Architecture For Programmers Volume III: The MIPS64® and microMIPS64™ Privileged Resource Architecture, Re-
vision 5.04

Figure 9.19 PWField Register Format
63 38 37 32

Reserved BDI

31 30 29 24 23 18 17 12 11 6 5 0

0 GDI UDI MDI PTI PTEI

Table 9.21 PWField Register Field Descriptions

Fields

Description
Read /
Write

Reset
State ComplianceName Bits

0 63..38 Must be written as zero; returns zero on read. R0 0 Optional

BDI 37..32 Base Directory index. Least significant bit of the ind x
field xtracted from the faulting address, which is used to
index into the Base Directory. The number of index bits is
specified b PWSizeBDW.

R/W 0 Optional

0 31..30 Must be written as zero; returns zero on read. R0 0 Required

GDI 29..24 Global Directory index. Least significant bit of the ind x
field xtracted from the faulting address, which is used to
index into the Global Directory. The number of index bits
is specified b PWSizeGDW.

R/W 0 Required when
PWSizeGDW

is implemented

UDI 23..18 Upper Directory index. Least significant bit of the ind x
field xtracted from the faulting address, which is used to
index into the Upper Directory. The number of index bits
is specified b PWSizeUDW.

R/W 0 Required when
PWSizeUDW

is implemented

MDI 17..12 Middle Directory index. Least significant bit of the ind x
field xtracted from the faulting address, which is used to
index into the Middle Directory. The number of index bits
is specified b PWSizeMDW.

R/W 0 Required when
PWSizeMDW

is implemented

PTI 11..6 Page Table index. Least significant bit of the ind x fiel
extracted from the faulting address, which is used to index
into the Page Table. The number of index bits is specifie
by PWSizePTW.

R/W 0 Required

9.18 PWSize Register (CP0 Register 5, Select 7)

MIPS® Architecture For Programmers Volume III: The MIPS64® and microMIPS64™ Privileged Resource Architecture, Revi-
sion 5.04 168

The PWField register may be optionally extended to a 64 bit register to include support for an additional 4th directory
level prior to PGD (PWFieldBDI). With this additional level, the length of the page table walk increases to 5 levels
from 4. The PWCtlPWDirExt field is used by Soft are to determine the presence of this feature.

The purpose of this additional level is to support walking multiple tables. For example, user and kernel page tables
can be maintained separately.

Note that the PTEI field can be incorrectly programmed so that the entire PFN, C, , G TLB fields are verwritten
with zeros by the logical right shift operation. The intention of this facility is to only remove the SW-only bits of the
PTE from the value which will be later written into the TLB.

9.18 PWSize Register (CP0 Register 5, Select 7)

Compliance Level: Required for the hardware page walk feature.

The PWSize register configures hard are page table walking for TLB refills. It is used in combination with th
PWBase and PWField registers.

PTEI 5..0 Page Table Entry shift.
Specifies the logical right shift and rotation which will b
applied to Page Table Entry values loaded by hardware
page table walking.

The entire PTE is logically right shifted by PTEI-2 bits
first. The purpose of this shift is to rem ve the SW-only
bits from what will be written into the TLB entry. Then
the two least-significant bits of the shifted alue are
rotated into position for the RI and XI protection bit loca-
tions within the TLB entry.

A value of 2 means rotate the right-most 2 bits into the RI/
XI bit positions for the TLB entry.

A value of 3 means logical shift right by 1 bit the entire
PTE and then rotate the right-most 2 bits into the RI/XI
positions for the TLB entry. A value of 4 means logical
shift right by 2bits the entire PTE and then rotate the right-
most 2 bits into the RI/XI positions for the TLB entry.

The values of 1 and 0 are RESERVED and should not be
used; the operation of the HW Page Walker is UNPRE-
DICTABLE for these cases.

The set of available non-zero shifts is implementation-
dependent. Software can discover the available values by
writing this field. If the requested shift alue is not avail-
able, PTEI will contain zero on read. A shift of zero must
be implemented.

R/W 0 Required

Table 9.21 PWField Register Field Descriptions (Continued)

Fields

Description
Read /
Write

Reset
State ComplianceName Bits

169MIPS® Architecture For Programmers Volume III: The MIPS64® and microMIPS64™ Privileged Resource Architecture, Re-
vision 5.04

The operation of page table walking is described in Section 4.14 “Hardware Page Table Walker”.

The hardware page walk feature supports multi-level page tables - up to four directory levels plus one page table
level. The lowest level of any page table system is an array of Page Table Entries (PTEs). This array is known as a
Page Table (PT) and is indexed using bits from the faulting address. A single-level page table system contains only a
single Page Table.

A multi-level page table system forms a tree structure - the lowest (leaf) elements of which are Page Table Entries.
Levels above the lowest Page Table level are known as Directories. A directory consists of an array of pointers. Each
pointer in a directory is either to another directory or to a Page Table.

The Page Table and the Directories are indexed by bits extracted from the faulting address BadVAddr. The PWBase
register contains the base address of the first Directory or age Table which will be accessed. The PWSize register
specifies the number of ind x bits to be used for each level. The PWField register specifies the location of the ind x
fields i BadVAddr.

Index values used to access Directories are multiplied by the native pointer size for the refill. or 32-bit addressing,
the native pointer size is 32 bits (2 bit left shift). For 64-bit addressing, the native pointer size is set by the PWSizePS

field. Whe PWSizePS=0, the native pointer size is 32 bits (2 bit left shift), and hardware page table walking is
applied only when the TLB or XTLB Refill xception would be taken. When PWSizePS=1, the native pointer size is
64 bits (3 bit left shift), and hardware page table walking is applied only when an XTLB Refill xception would be
taken.

The index value used to access the Page Table is multiplied by the native pointer size. An additional multiplier (left
shift value) can be specified using th PWSizePTEW field. This all ws space to be allocated in the Page Table struc-
ture for software-managed fields

This register only exists if Config3PW=1.

The PWSize register is instantiated per-VPE in an MT Module processor.

Figure 9.20 shows the formats of the PWSize Register; Table 9.22 describes the PWSize register fields

9.18 PWSize Register (CP0 Register 5, Select 7)

MIPS® Architecture For Programmers Volume III: The MIPS64® and microMIPS64™ Privileged Resource Architecture, Revi-
sion 5.04 170

Figure 9.20 PWSize Register Format
63 38 37 32

Reserved BDW

31 30 29 24 23 18 17 12 11 6 5 0

0 PS GDW UDW MDW PTW PTEW

Table 9.22 PWSize Register Field Descriptions

Fields

Description
Read /
Write

Reset
State ComplianceName Bits

0 63..38 Must be written as zero; returns zero on read. 0 0 Optional

BDW 37..32 Base Directory index width. R/W 0 Optional

0 31 Must be written as zero; returns zero on read. 0 0 Required

PS 30 Pointer Size. R/W 0 Required

Value Meaning

0 No read is performed using Base
Directory index.

Non-zero Number of bits to be extracted from
BadVAddr to create an index into the
Base Directory. The least significan
bit of the field is specified
PWFieldBDI.

Value Meaning

0 32-bit pointer size. Pointers within
Directories are loaded as 32-bit
addresses.
Hardware Page Table Walking is acti-
vated only for 32-bit address regions,
when the TLB Refill ector would be
used.

1 64-bit pointer size. Pointers within
Directories are loaded as 64-bit
addresses.
Hardware Page Table Walking is acti-
vated only for 64-bit address regions,
when the XTLB Refill ector would
be used.

171MIPS® Architecture For Programmers Volume III: The MIPS64® and microMIPS64™ Privileged Resource Architecture, Re-
vision 5.04

GDW 29..24 Global Directory index width. R/W 0 Recommended

UDW 23..18 Upper Directory index width. R/W 0 Recommended

MDW 17..12 Middle Directory index width. R/W 0 Recommended

PTW 11..6 Page Table index width. R/W 0 Required

Table 9.22 PWSize Register Field Descriptions

Fields

Description
Read /
Write

Reset
State ComplianceName Bits

Value Meaning

0 No read is performed using Global
Directory index.

Non-zero Number of bits to be extracted from
BadVAddr to create an index into the
Global Directory. The least significan
bit of the field is specified
PWFieldGDI.

Value Meaning

0 No read is performed using Upper
Directory index.

Non-zero Number of bits to be extracted from
BadVAddr to create an index into the
Upper Directory. The least significan
bit of the field is specified
PWFieldUDI.

Value Meaning

0 No read is performed using Middle
Directory index.

Non-zero Number of bits to be extracted from
BadVAddr to create an index into the
Middle Directory. The least signifi
cant bit of the field is specified
PWFieldMDI.

Value Meaning

0 UNPREDICTABLE

Non-zero Number of bits to be extracted from
BadVAddr to create an index into the
Page Table. The least significan bit of
the field is specified PWFieldPTI.

9.18 PWSize Register (CP0 Register 5, Select 7)

MIPS® Architecture For Programmers Volume III: The MIPS64® and microMIPS64™ Privileged Resource Architecture, Revi-
sion 5.04 172

The PWSize register may be optionally extended to a 64 bit register to include support for an additional 4th directory
level prior to PGD (PWSizeBDW). With this additional level, the length of the page table walk increases to 5 levels
from 4. The PWCtlPWDirExt field is used by Soft are to determine the presence of this feature.

Table 9.23 describes valid PWSize PS/PTEW and PWCtlHugePg settings.

PTEW 5..0 Specifies the left shift applied to the age Table index, in
addition to the shift required to account for the native data
size of the machine.
The set of available shifts is implementation-dependent.
Software can discover the available values by writing this
field. If the requested shift alue is not available, PTEW
will be written as zero. A shift of one must be imple-
mented.

R/W 0 Required

Table 9.23 PS/PTEW Usage

PWSizePS PWCtlHugePg PWSizePTEW

Pointer
Addressing

Directory
Pointer SIze

Non-Leaf
PTE Size

Leaf PTE
Size

Suggested
Use Case

0 0 0 32 bits 32 bits N/A 32 bits 32-bit Com-
patibility

0 0 1 32 bits 32 bits N/A 64 bits 32-bit with
PA>32bits

Compatibility

0 1 0 32 bits 32 bits 32 bits 32 bits 32-bit with
Huge Pages

Compatibility

0 1 1 32 bits 64 bits1

1. The “Directory Pointer Size” column denotes how many bytes of memory is used for each pointer in the directory lev-
els. If this size is larger than the pointer itself, the pointer uses the least significant bytes

64 bits 64 bits 32-bit with
Huge Pages

& PA>32 bits
Compatibility

1 0 0 64 bits 64 bits N/A 64 bits 64-bit Base

1 0 1 64 bits 64 bits N/A 128 bits 64-bit with
extended PTE

1 1 0 64 bits 64 bits 64 bits 64 bits 64 bit with
Huge Pages

1 1 1 64 bits 128 bits1 128 bits 128 bits 64-bit with
Huge Pages
& extended

PTE

N/A N/A >1 Not supported

Table 9.22 PWSize Register Field Descriptions

Fields

Description
Read /
Write

Reset
State ComplianceName Bits

173MIPS® Architecture For Programmers Volume III: The MIPS64® and microMIPS64™ Privileged Resource Architecture, Re-
vision 5.04

64-bit architectural support of 32-bit and/or 64-bit compatibility/extended modes is implementation-dependent. Soft-
ware can determine supported modes by writing to PWSizePS and PWSizePTEW fields and reading, unsupported al-
ues will be written as zero.

9.19 Wired Register (CP0 Register 6, Select 0)

MIPS® Architecture For Programmers Volume III: The MIPS64® and microMIPS64™ Privileged Resource Architecture, Revi-
sion 5.04 174

9.19 Wired Register (CP0 Register 6, Select 0)

Compliance Level: Required for TLB-based MMUs; Optional otherwise.

The Wired register is a read/write register that specifies the boundary between the wired and random entries in th
TLB as shown in Figure 9.21.

Figure 9.21 Wired And Random Entries In The TLB

The width of the Wired fiel is calculated in the same manner as that described for the Index register. Wired entries are
fi ed, non-replaceable entries which are not overwritten by a TLBWR instruction.Wired entries can be overwritten by
a TLBWI instruction.

The Wired register is set to zero by a Reset Exception. Writing the Wired register causes the Random register to reset
to its upper bound.

The operation of the processor is UNDEFINED if a value greater than or equal to the number of TLB entries is writ-
ten to the Wired register.

Figure 9.21 shows the format of the Wired register; Table 9.24 describes the Wired register fields

Figure 9.22 Wired Register Format
31 n n-1 0

0 Wired

R
an

do
m

W
ire

d

Entry TLBSize-1

Entry 0

Entry 1010Wired Register

175MIPS® Architecture For Programmers Volume III: The MIPS64® and microMIPS64™ Privileged Resource Architecture, Re-
vision 5.04

Table 9.24 Wired Register Field Descriptions

Fields

Description
Read/
Write Reset State ComplianceName Bits

0 31..n Must be written as zero; returns zero on read. 0 0 Reserved

Wired n-1..0 TLB wired boundary R/W 0 Required

9.19 Wired Register (CP0 Register 6, Select 0)

MIPS® Architecture For Programmers Volume III: The MIPS64® and microMIPS64™ Privileged Resource Architecture, Revi-
sion 5.04 176

177MIPS® Architecture For Programmers Volume III: The MIPS64® and microMIPS64™ Privileged Resource Architecture, Re-
vision 5.04

9.20 PWCtl Register (CP0 Register 6, Select 6)

Compliance Level: Required for the hardware page walker feature.

The PWCtl register configures hard are page table walking for TLB refills. It is used in combination with th
PWBase, PWField and PWSize registers.

Hardware page table walking is disabled when PWCtlPWEn=0.

The hardware page walker feature supports multi-level page tables - up to four directory levels plus one page table
level. The lowest level of any page table system is an array of Page Table Entries (PTEs). This array is known as a
Page Table (PT) and is indexed using bits from the faulting address. A single-level page table system contains only a
single Page Table.

A multi-level page table system forms a tree structure - the lowest (leaf) elements of which are Page Table Entries.
Levels above the lowest Page Table level are known as Directories. A directory consists of an array of pointers. Each
pointer in a directory is either to another directory or to a Page Table.

The Page Table and the Directories are indexed by bits extracted from the faulting address BadVAddr. The PWBase
register contains the base address of the first Directory or age Table which will be accessed. The PWSize register
specifies the number of ind x bits to be used for each level. The PWField register specifies the location of the ind x
fields i BadVAddr.

The existence of this register is denoted when Config3PW=1.

The PWField register is instantiated per-VPE in an MT Module processor.

Figure 9.23 shows the formats of the PWCtl Register; Table 9.25 describes the PWCtl register fields

9.20 PWCtl Register (CP0 Register 6, Select 6)

MIPS® Architecture For Programmers Volume III: The MIPS64® and microMIPS64™ Privileged Resource Architecture, Revi-
sion 5.04 178

Figure 9.23 PWCtl Register Format

If the implementation supports Huge Pages, then Software enables Huge Pages by setting PWCtlHugePg=1. Software
can disable Huge Pages by setting PWCtlHugePg = 0. An implementation that does not support Huge Pages is required

31 30 29 28 27 26 25 8 7 6 5..0

PWEn PWDirExt 0 XK XS XU Reserved DPH HugePg Psn

Table 9.25 PWCtl Register Field Descriptions

Fields

Description
Read /
Write

Reset
State ComplianceName Bits

PWEn 31 Hardware Page Table walker enable
If this bit is set, then the Hardware Page Table is enabled.

R/W 0 Required

PWDirExt 30 PW Indices - PWField and PWSize - extended for 4th
directory level - the Base level.

R/W 0 Required

XK 28 If XK=1, walker handles xkseg.

If XK=0, xkseg misses generate a TLB miss exception.
The hardware page walk is not initiated.

R/W 0 Required

XS 27 If XS=1, walker handles xsseg.

If XS=0, xsseg misses generate a TLB miss exception.
The hardware page walk is not initiated.

R/W 0 Required

XU 26 If XU=1, walker handles xuseg.

If XU=0, xuseg misses generate a TLB miss exception.
The hardware page walk is not initiated.

R/W 0 Required

- 29, 25..8 Reserved, Must be written as zero; returns zero on read. R0 0 Required

DPH 7 Dual Page format of Huge Page support. This bit is only
used when HugePg=1.

If DPH bit is set, then a Huge Page PTE can represent a
power-of-4 memory region or a 2x power-of-4 memory
region. For the first case, one PTE is used for ven TLB
page and the adjacent PTE is used for the odd PTE. For
the latter case, the Hardware will synthesize the physical
addresses for both the even and odd TLB pages from the
single PTE entry.

If DPH bit is clear, then a Huge Page PTE can only repre-
sent a region that is 2 x power-of-4 in size. For this case,
the Hardware will synthesize the physical addresses for
both the even and odd TLB pages from the single PTE
entry.

R or R/W 0 Required

HugePg 6 Huge Page PTE supported in Directory levels. If this bit is
set, then Huge Page PTE in non-leaf table (i.e., directory
level) is supported.

R or R/W 0 Required

PSn 5:0 Bit position of PTEvld in Huge Page PTE. Only used
when HugePg field is set

R/W 0 Required

179MIPS® Architecture For Programmers Volume III: The MIPS64® and microMIPS64™ Privileged Resource Architecture, Re-
vision 5.04

to hardwire PWCtlHugetPg = 0 read-only. Software can determine Huge Page support by writing 1 to PWCtlHugePg, if a
following read returns 0, then Huge Page support is not implemented.

The PWCtlPsn field is pr visioned at 6 bits, allowing a starting bit position for PTEvld up to bit 64 in the PTE. An
implementation may choose to support a more limited range by hardwiring an implementation define number of the
high order bits of PWCtlPsn to 0. Software can determine the supported range by writing ones to PWCtlPsn then read-
ing.

For non-Leaf

Table 9.26 describes allowed PWCtl XK/XS/XU register field configuration

The XK, XS, XU fields of th PWCtl register control visibility of virtual address bits 63..62 specified i PWFieldGDI
and PWSizeGDW. The XK, XS, XU fields function primarily as a performance optimization, all wing segment based
exclusion of address translations from the hardware page table.

The XK, XS, XU fields are ignored if the optional 4th directory l vel feature (determinable by PWCtlPWDirExt=1) is
implemented, in this case, virtual address bits 63..62 are used in Base Directory lookup.

Table 9.27 describes how the HugePg field is used to denote whether Huge ages are supported or not.

Table 9.26 PWCtl XK/XS/XU Register Field configurations

Fields Virtual Address Bits
Prepended to Global

Directory Index
Hardware walker

capabilityXK XS XU

0 0 0 None disabled

0 0 1 None xuseg

0 1 0 - reserved

0 1 1 62 xuseg and xsseg

1 0 0 - reserved

1 0 1 63 xuseg and xkseg

1 1 0 - reserved

1 1 1 63..62 xuseg, xsseg, xkseg

Table 9.27 HugePg Field and Huge Page configurations

PWCTLHugePg

Type of Entry
Rsvd Field in Non-

leaf entry CommentNon-Leaf Leaf

0 Always Pointer

PTEPTEVld not used

Always PTE

PTEPTEVld not used

X No Huge-Page Support

1 PTEPTEVld=0 means Pointer

PTEPTEVld=1 means Huge Page

Always PTE

PTEPTEVld not used

Must be 0 Huge-Page Support

9.20 PWCtl Register (CP0 Register 6, Select 6)

MIPS® Architecture For Programmers Volume III: The MIPS64® and microMIPS64™ Privileged Resource Architecture, Revi-
sion 5.04 180

Table 9.28 describes how Huge Pages are represented in the Directory Levels.

Table 9.28 Huge Page representation in Directory Levels

PWCTLDPH

Size of Huge Page

CommentPower of 4 non-Power of 4

0 Not Allowed

If encountered, HW Page
Walker aborts and TLB/XTLB

Refill xception is taken.

Allowed

Even TLB page and Odd TLB
page entries both derived from
single PTE

Huge-Page region can
only be 2x power-of-4

1 Allowed

Two PTEs are read from mem-
ory by the HW Page Walker to
be used for the Even and Odd
TLB page entries.

Allowed

Even TLB page and Odd TLB
page entries both derived from
single PTE

Huge-Page region can be
any power-of- 2

(either power of 4 or 2x
power-of-4)

181MIPS® Architecture For Programmers Volume III: The MIPS64® and microMIPS64™ Privileged Resource Architecture, Re-
vision 5.04

9.21 HWREna Register (CP0 Register 7, Select 0)

Compliance Level: Required (Release 2).

The HWREna register contains a bit mask that determines which hardware registers are accessible via the RDHWR
instruction when that instruction is executed in a mode in which coprocessor 0 is not enabled.

Figure 9.24 shows the format of the HWREna Register; Table 9.29 describes the HWREna register fields

Figure 9.24 HWREna Register Format
31 30 29 4 3 0

Impl Mask

Table 9.29 HWREna Register Field Descriptions

Fields

Description
Read /
Write

Reset
State ComplianceName Bits

31..30 Impl These bits enable access to the implementation-
dependent hardware registers 31 and 30.

If a register is not implemented, the corresponding bit
returns a zero and is ignored on write.

If a register is implemented, access to that register is
enabled if the corresponding bit in this fiel is a 1 and
disabled if the corresponding bit is a 0.

R/W 0 Optional - Reserved
for Implementations

Mask 29..0 Each bit in this field enables access by the RDHW
instruction to a particular hardware register (which
may not be an actual register).

If RDHWR register ‘n’ is not implemented, bit ‘n’ of
this field returns a zero and is ignored on a write

If RDHWR register ‘n’ is implemented, access to the
register is enabled if bit ‘n’ in this fiel is a 1 and dis-
abled if bit ‘n’ of this field is a 0
See the RDHWR instruction for a list of valid hard-
ware registers.

Table 9.30 lists the RDHWR registers, and register
number ‘n’ corresponds to bit ‘n’ in this field

R/W 0 Required

9.21 HWREna Register (CP0 Register 7, Select 0)

MIPS® Architecture For Programmers Volume III: The MIPS64® and microMIPS64™ Privileged Resource Architecture, Revi-
sion 5.04 182

Using the HWREna register, privileged software may select which of the hardware registers are accessible via the
RDHWR instruction. In doing so, a register may be virtualized at the cost of handling a Reserved Instruction Excep-
tion, interpreting the instruction, and returning the virtualized value. For example, if it is not desirable to provide
direct access to the Count register, access to that register may be individually disabled and the return value can be vir-
tualized by the operating system.

Software may determine which registers are implemented by writing all ones to the HWREna register, then reading
the value back. If a bit reads back as a one, the processor implements that hardware register.

Table 9.30 RDHWR Register Numbers

Register
Number Mnemonic Description Compliance

0
CPUNum Number of the CPU on which the program is currently running. This register

provides read access to the coprocessor 0 EBaseCPUNum field
Required

1

SYNCI_Step Address step size to be used with the SYNCI instruction. See that instruction’s
description for the use of this value. In the typical implementation, this value
should be zero if there are no caches in the system which must be synchronize
(either because there are no caches, or because the instruction cache tracks
writes to the data cache). In other cases, the return value should be the smallest
line size of the caches that must be synchronize.

Required

2
CC High-resolution cycle counter. This register provides read access to the copro-

cessor 0 Count Register.
Required

3

CCRes Resolution of the CC register. This value denotes the number of cycles
between update of the register. For example:

Required

4-28
These registers numbers are reserved for future architecture use. Access
results in a Reserved Instruction Exception.

Reserved

29

ULR User Local Register. This register provides read access to the coprocessor 0
UserLocal register, if it is implemented. In some operating environments, the
UserLocal register is a pointer to a thread-specific storage block

Required if the
UserLocal reg-
ister is imple-

mented

30-31
These register numbers are reserved for implementation-dependent use. If they
are not implemented, access results in a Reserved Instruction Exception.

Optional

CCRes Value Meaning

1 CC register increments every CPU cycle
2 CC register increments every second CPU cycle
3 CC register increments every third CPU cycle

etc.

183MIPS® Architecture For Programmers Volume III: The MIPS64® and microMIPS64™ Privileged Resource Architecture, Re-
vision 5.04

9.22 BadVAddr Register (CP0 Register 8, Select 0)

Compliance Level: Required.

The BadVAddr register is a read-only register that captures the most recent virtual address that caused one of the fol-
lowing exceptions:

• Address error (AdEL or AdES)

• TLB/XTLB Refil

• TLB Invalid (TLBL, TLBS)

• TLB Modifie

The BadVAddr register does not capture address information for cache or bus errors, or for Watch exceptions, since
none is an addressing error.

Figure 9.25 shows the format of the BadVAddr register; Table 9.31 describes the BadVAddr register fields

Figure 9.25 BadVAddr Register Format
63 0

BadVAddr

Table 9.31 BadVAddr Register Field Descriptions

Fields

Description
Read/
Write Reset State ComplianceName Bits

BadVAddr 63..0 Bad virtual address R Undefine Required

9.22 BadVAddr Register (CP0 Register 8, Select 0)

MIPS® Architecture For Programmers Volume III: The MIPS64® and microMIPS64™ Privileged Resource Architecture, Revi-
sion 5.04 184

185MIPS® Architecture For Programmers Volume III: The MIPS64® and microMIPS64™ Privileged Resource Architecture, Re-
vision 5.04

9.23 BadInstr Register (CP0 Register 8, Select 1)

Compliance Level: Optional

The BadInstr register is a read-only register that capture the most recent instruction which caused one of the following
exceptions:

• Instruction validity

Coprocessor Unusable, Reserved Instruction

• Execution Exception

Integer Overfl w, Trap, System Call, Breakpoint, Floating Point, Coprocessor 2 exception

• Addressing

Address Error, TLB or XTLB Refill, TLB I valid, TLB Read Inhibit, TLB Execute Inhibit, TLB Modifie

The BadInstr register is provided to allow acceleration of instruction emulation. The BadInstr register is only set by
exceptions which are synchronous to an instruction. The BadInstr register is not set by Interrupts, NMI, Machine
check, Bus Error or Cache Error exceptions. The BadInstr register is not set by Watch or EJTAG exceptions.

When a synchronous exception occurs for which there is no valid instruction word (for example TLB Refil - Instruc-
tion Fetch), the value stored in BadInstr is UNPREDICTABLE.

Presence of the BadInstr register is indicated by the Config3BI bit. The BadInstr register is instantiated per-VPE in an
MT Module processor.

Figure 9.26 shows the proposed format of the BadInstr register; Table 9.32describes the BadInstr register fields

Figure 9.26 BadInstr Register Format
31 0

BadInstr

Table 9.32 BadInstr Register Field Descriptions

Fields

Description
Read /
Write

Reset
State ComplianceName Bits

BadInstr 31:0 Faulting instruction word.
Instruction words smaller than 32 bits are placed in bits
15:0, with bits 31:16 containing zero.

R Undefine Optional

9.23 BadInstr Register (CP0 Register 8, Select 1)

MIPS® Architecture For Programmers Volume III: The MIPS64® and microMIPS64™ Privileged Resource Architecture, Revi-
sion 5.04 186

187MIPS® Architecture For Programmers Volume III: The MIPS64® and microMIPS64™ Privileged Resource Architecture, Re-
vision 5.04

9.24 BadInstrP Register (CP0 Register 8, Select 2)

Compliance Level: Optional

The BadInstrP register is used in conjunction with the BadInstr register. The BadInstrP register contains the prior
branch instruction, when the faulting instruction is in a branch delay slot.

The BadInstrP register is updated for these exceptions:

• Instruction validity

Coprocessor Unusable, Reserved Instruction

• Execution Exception

Integer Overfl w, Trap, System Call, Breakpoint, Floating Point, Coprocessor 2 exception

• Addressing

Address Error, TLB or XTLB Refill, TLB I valid, TLB Read Inhibit, TLB Execute Inhibit, TLB Modifie

The BadInstrP register is provided to allow acceleration of instruction emulation. The BadInstrP register is only set by
exceptions which are synchronous to an instruction. The BadInstrP register is not set by Interrupts, NMI, Machine
check, Bus Error or Cache Error exceptions. The BadInstr register is not set by Watch or EJTAG exceptions.

When a synchronous exception occurs and the faulting instruction is not in a branch delay slot, then the value stored
in BadInstrP is UNPREDICTABLE.

Presence of the BadInstrP register is indicated by the Config3BP bit. The BadInstrP register is instantiated per-VPE in
an MT Module processor.

Figure 9.27 shows the proposed format of the BadInstrP register; Table 9.33describes the BadInstrP register fields

Figure 9.27 BadInstrP Register Format
31 0

BadInstrP

Table 9.33 BadInstrP Register Field Descriptions

Fields

Description
Read /
Write

Reset
State ComplianceName Bits

BadInstrP 31:0 Prior branch instruction.
Instruction words smaller than 32 bits are placed in bits
15:0, with bits 31:16 containing zero.

R Undefine Optional

9.25 Count Register (CP0 Register 9, Select 0)

MIPS® Architecture For Programmers Volume III: The MIPS64® and microMIPS64™ Privileged Resource Architecture, Revi-
sion 5.04 188

9.25 Count Register (CP0 Register 9, Select 0)

Compliance Level: Required.

The Count register acts as a timer, incrementing at a constant rate, whether or not an instruction is executed, retired,
or any forward progress is made through the pipeline. The rate at which the counter increments is implementation-
dependent, and is a function of the pipeline clock of the processor, not the issue width of the processor.

The Count register can be written for functional or diagnostic purposes, including at reset or to synchronize proces-
sors.

The Count register can also be read via RDHWR register 2.

Figure 9.28 shows the format of the Count register; Table 9.34 describes the Count register fields

9.26 Reserved for Implementations (CP0 Register 9, Selects 6 and 7)

Compliance Level: Implementation-dependent.

CP0 register 9, Selects 6 and 7 are reserved for implementation-dependent use and are not define by the architecture.

Figure 9.28 Count Register Format
31 0

Count

Table 9.34 Count Register Field Descriptions

Fields

Description
Read/
Write Reset State ComplianceName Bits

Count 31..0 Interval counter R/W Undefine Required

189MIPS® Architecture For Programmers Volume III: The MIPS64® and microMIPS64™ Privileged Resource Architecture, Re-
vision 5.04

9.27 EntryHi Register (CP0 Register 10, Select 0)

Compliance Level: Required for TLB-based MMU; Optional otherwise.

The EntryHi register contains the virtual address match information used for TLB read, write, and access operations.

A TLB exception (TLB Refill XTLB Refill TLB Invalid, or TLB Modified causes the bits of the virtual address cor-
responding to the R and VPN2 fields to be written into th EntryHi register. An implementation of Release 2 of the
Architecture which supports 1KB pages also writes VA12..11 into the VPN2X field of th EntryHi register. A TLBR
instruction writes the EntryHi register with the corresponding fields from the selected TLB entr . The ASID field i
written by software with the current address space identifie value and is used during the TLB comparison process to
determine TLB match.

Because the ASID field is verwritten by a TLBR instruction, software must save and restore the value of ASID
around use of the TLBR. This is especially important in TLB Invalid and TLB Modified xceptions, and in other
memory management software.

In Release 3 of the architecture, the VPN2 fiel of the TLB entry can be optionally invalidated. When this is done, the
invalidated entry is ignored on address match for memory accesses. One method of invalidating the VPN2 fiel is the
use of the EHINV field with the TLBWI instruction. This field xists if Config4IE is set to a value of 2 or 3. This fiel
is overwritten by a TLBR instruction, so software must save and restore the value of the EHINV fiel around the use
of the TLBR instruction. This is especially important for the subsequent usage of TLBWI instructions.

Software may determine the value of SEGBITS by writing all ones to the EntryHi register and reading the value back.
Bits read as “1” from the VPN2 field all w software to determine the boundary between the VPN2 and Fill fields t
calculate the value of SEGBITS.

The VPNX2, VPN2, and R fields of th EntryHi register are not defined after an address error xception and these
fields may be modified by har are during the address error exception sequence. Software writes of the EntryHi reg-
ister (via MTC0 or DMTC0) do not cause the implicit write of address-related fields in th BadVAddr, Context, or
XContext registers.

Figure 9.29 shows the format of the EntryHi register; Table 9.35 describes the EntryHi register fields

Figure 9.29 EntryHi Register Format
63 62 61 40 39 32

R Fill VPN2

VPN2, cont. VPN2X EH
INV ASIDX ASID

31 13 12 11 10 8 7 0

9.27 EntryHi Register (CP0 Register 10, Select 0)

MIPS® Architecture For Programmers Volume III: The MIPS64® and microMIPS64™ Privileged Resource Architecture, Revi-
sion 5.04 190

Table 9.35 EntryHi Register Field Descriptions

Fields

Description
Read /
Write

Reset
State ComplianceName Bits

R 63..62 Virtual memory region, corresponding to VA63 62.

This fiel is written by hardware on a TLB exception or on
a TLB read, and is written by software before a TLB write.
For processors implementing ConfigAT = 1 (access to 32-
bit compatibility segments only), only the 0b00 and 0b11
values are legal. In this circumstance, the operation of the
processor is UNDEFINED if EntryHiR is written with
any other value, and the processor will only supply the
legal values on an exception.

R/W Undefine Required

Fill 61..40 Fill bits reserved for expansion of the virtual address
space. See below. Returns zeros on read, ignored on write.

R 0 Required

VPN2 39..13 VA39 13 of the virtual address (virtual page number / 2).
This fiel is written by hardware on a TLB exception or on
a TLB read, and is written by software before a TLB write.
The default width of this field implicitly limits the size o
each virtual address space to 40 bits. If the processor
implements fewer virtual address bits than this default, the
Fill field must be xtended to take up the unimplemented
VPN2 bits. If the processor implements more virtual
address bits than this default, the VPN2 field must b
extended to take up some or all of the Fill bits.

R/W Undefine Required

VPN2X 12..11 In Release 2 of the Architecture (and subsequent releases),
the VPN2X fiel is an extension to the VPN2 fiel to sup-
port 1KB pages. These bits are not writable by either hard-
ware or software unless Config3SP = 1 and
PageGrainESP = 1. If enabled for write, this field con
tains VA12 11 of the virtual address and is written by hard-
ware on a TLB exception or on a TLB read, and is by
software before a TLB write.
If writes are not enabled, and in implementations of
Release 1 of the Architecture, this field must be writte
with zero and returns zeros on read.

R/W 0 Required(Release
2 and 1KB Page

Support)

Encoding Meaning

0b00 xuseg: user address region
0b01 xsseg: supervisor address region. If

Supervisor Mode is not implemented,
this encoding is reserved

0b10 Reserved
0b11 xkseg: kernel address region

191MIPS® Architecture For Programmers Volume III: The MIPS64® and microMIPS64™ Privileged Resource Architecture, Re-
vision 5.04

Programming Note:

In implementations of Release 2 (and subsequent releases) of the Architecture, the VPN2X fiel of the EntryHi register
must be written with zero and the TLB must be flushe before each instance in which the value of the PageGrain reg-
ister is changed. This operation must be carried out while running in an unmapped address space. The operation of the
processor is UNDEFINED if this sequence is not done.

EHINV 10 TLB HW Invalidate

If Config4IE > 1, and this bit is set, the TLBWI instruc-
tion will invalidate the VPN2 field of the selected TL
entry.
If Config4IE > 1, a TLBR instruction will update this fiel
withe the VPN2 invalid bit of the read TLB entry.

R/W 0 Optional in
release 3.

Required for
TLBWI invalidate

support.

ASIDX 9..8 If Config4AE = 1 then these bits extend the ASID field

If Config4AE = 0 then Must be written as zero; returns
zero on read.

If
Config4A

E = 1 then
R/W
else 0

If
Config4AE=

1 then
Undefine

else 0

Required

ASID 7..0 Address space identifie . This field is written by hard are
on a TLB read and by software to establish the current
ASID value for TLB write and against which TLB refer-
ences match each entry’s TLB ASID field

R/W Undefine Required (TLB
MMU)

Table 9.35 EntryHi Register Field Descriptions

Fields

Description
Read /
Write

Reset
State ComplianceName Bits

9.28 Compare Register (CP0 Register 11, Select 0)

MIPS® Architecture For Programmers Volume III: The MIPS64® and microMIPS64™ Privileged Resource Architecture, Revi-
sion 5.04 192

9.28 Compare Register (CP0 Register 11, Select 0)

Compliance Level: Required.

The Compare register acts in conjunction with the Count register to implement a timer and timer interrupt function.
The Compare register maintains a stable value and does not change on its own.

When the value of the Count register equals the value of the Compare register, an interrupt request is made. In
Release 1 of the architecture, this request is combined in an implementation-dependent way with hardware interrupt 5
to set interrupt bit IP(7) in the Cause register. In Release 2 (and subsequent releases) of the Architecture, the presence
of the interrupt is visible to software via the CauseTI bit and is combined in an implementation-dependent way with a
hardware or software interrupt. For Vectored Interrupt Mode, the interrupt is at the level specified by th IntCtlIPTI

field

For diagnostic purposes, the Compare register is a read/write register. In normal use however, the Compare register is
write-only. Writing a value to the Compare register, as a side effect, clears the timer interrupt. Figure 9.30 shows the
format of the Compare register; Table 9.36 describes the Compare register fields

Programming Note:

In Release 2 of the Architecture, the EHB instruction can be used to make interrupt state changes visible when the
Compare register is written. See 6.1.2.1 “Software Hazards and the Interrupt System” on page 91.

9.29 Reserved for Implementations (CP0 Register 11, Selects 6 and 7)

Compliance Level: Implementation-dependent.

CP0 register 11, Selects 6 and 7 are reserved for implementation-dependent use and are not defined by the architec
ture.

Figure 9.30 Compare Register Format
31 0

Compare

Table 9.36 Compare Register Field Descriptions

Fields

Description
Read /
Write

Reset
State ComplianceName Bits

Compare 31..0 Interval count compare value R/W Undefine Required

193MIPS® Architecture For Programmers Volume III: The MIPS64® and microMIPS64™ Privileged Resource Architecture, Re-
vision 5.04

9.30 Status Register (CP Register 12, Select 0)

Compliance Level: Required.

The Status register is a read/write register that contains the operating mode, interrupt enabling, and the diagnostic
states of the processor. Fields of this register combine to create operating modes for the processor. Refer to “MIPS64
and microMIPS64 Operating Modes” on page 22 for a discussion of operating modes, and “Interrupts” on page 80 for
a discussion of interrupt modes.

Figure 9.31 shows the format of the Status register; Table 9.37 describes the Status register fields

Figure 9.31 Status Register Format
31 28 27 26 25 24 23 22 21 20 19 18 17 16 15 10 9 8 7 6 5 4 3 2 1 0

CU3..CU0 RP FR RE MX PX BEV TS SR NMI ASE Impl IM7..IM2 IM1..IM0 KX SX UX UM R0 ERL EXL IE

IPL KSU

Table 9.37 Status Register Field Descriptions

Fields

Description
Read /
Write

Reset
State ComplianceName Bits

CU (CU3..
CU0)

31..28 Controls access to coprocessors 3, 2, 1, and 0, respec-
tively:

Coprocessor 0 is always usable when the processor is run-
ning in Kernel Mode or Debug Mode, independent of the
state of the CU0 bit.
In Release 2 (and subsequent releases) of the Architecture,
and for 64-bit implementations of Release 1 of the Archi-
tecture, execution of all floating point instructions, includ
ing those encoded with the COP1X opcode, is controlled
by the CU1 enable. CU3 is no longer used and is reserved
for future use by the Architecture.
If there is no provision for connecting a coprocessor, the
corresponding CU bit must be ignored on write and read
as zero.

R/W Undefine Required for all
implemented
coprocessors

RP 27 Enables reduced power mode on some implementations.
The specifi operation of this bit is implementation-depen-
dent.
If this bit is not implemented, it must be ignored on write
and read as zero. If this bit is implemented, the reset state
must be zero so that the processor starts at full perfor-
mance.

R/W 0 Optional

Encoding Meaning

0 Access not allowed
1 Access allowed

9.30 Status Register (CP Register 12, Select 0)

MIPS® Architecture For Programmers Volume III: The MIPS64® and microMIPS64™ Privileged Resource Architecture, Revi-
sion 5.04 194

FR 26 This bit is used to control the floating point r gister mode
for 64-bit floating point units

In Release 1 of the Architecture, only MIPS64 processors
could implement a 64-bit floating point unit. In Release
of the Architecture (and subsequent releases), both 32-bit
and 64-bit processors can implement a 64-bit floatin
point unit. As of Release 5 of the Architecture, if floatin
point is implemented then FR = 1 is required. I.e. the 64-
bit FPU, with the FR = 1 64-bit FPU register model, is
required. The FR = 0 32-bit FPU register model continues
to be required.

This bit must be ignored on write and read as zero under
the following conditions:
• No floating point unit is implemente
• In a MIPS32 implementation of Release 1 of the Archi-

tecture
• In an implementation of Release 2 of the Architecture

(and subsequent releases) in which a 64-bit floatin
point unit is not implemented

Certain combinations of the FR bit and other state or oper-
ations can cause UNPREDICTABLE behavior. See “64-
bit FPR Enable” on page 24 for a discussion of these com-
binations.
When software changes the value of this bit, the contents
of the floating point r gisters are UNPREDICTABLE.

R/W Undefine Required

RE 25 Used to enable reverse-endian memory references while
the processor is running in user mode:

Neither Debug Mode nor Kernel Mode nor Supervisor
Mode references are affected by the state of this bit.
If this bit is not implemented, it must be ignored on write
and read as zero.

R/W Undefine Optional

Table 9.37 Status Register Field Descriptions (Continued)

Fields

Description
Read /
Write

Reset
State ComplianceName Bits

Encoding Meaning

0 Floating point registers can contain
any 32-bit datatype. 64-bit datatypes
are stored in even-odd pairs of regis-
ters.

1 Floating point registers can contain
any datatype

Encoding Meaning

0 User mode uses configured endiannes
1 User mode uses reversed endianness

195MIPS® Architecture For Programmers Volume III: The MIPS64® and microMIPS64™ Privileged Resource Architecture, Re-
vision 5.04

MX 24 Enables access to MDMX™ and MIPS® DSP resources
on processors implementing one of these ASEs. If neither
the MDMX nor the MIPS DSP Module is implemented,
this bit must be ignored on write and read as zero.

R if the pro-
cessor imple-
ments
neither the
MDMX nor
the MIPS
DSP Mod-
ules; other-
wise R/W

0 if the pro-
cessor imple-
ments
neither the
MDMX nor
the MIPS
DSP Mod-
ules; other-
wise
Undefine

Optional

PX 23 Enables access to 64-bit operations in User mode, without
enabling 64-bit addressing:

R/W Undefine Required

BEV 22 Controls the location of exception vectors:

See “Exception Vector Locations” on page 93 for details.

R/W 1 Required

TS1 21 Indicates that the TLB has detected a match on multiple
entries. It is implementation-dependent whether this
detection occurs at all, on a write to the TLB, or an access
to the TLB. In Release 2 of the Architecture (and sub-
sequent releases), multiple TLB matches may only
be reported on a TLB write. When such a detection
occurs, the processor initiates a machine check exception
and sets this bit. It is implementation-dependent whether
this condition can be corrected by software. If the condi-
tion can be corrected, this bit should be cleared by soft-
ware before resuming normal operation.
See “TLB Initialization” on page 39 for a discussion of
software TLB initialization used to avoid a machine check
exception during processor initialization.
If this bit is not implemented, it must be ignored on write
and read as zero.
Software should not write a 1 to this bit when its value is a
0, thereby causing a 0-to-1 transition. If such a transition is
caused by software, it is UNPREDICTABLE whether
hardware ignores the write, accepts the write with no side
effects, or accepts the write and initiates a machine check
exception.

R/W 0 Required if the
processor detects
and reports a
match on multi-
ple TLB entries

Table 9.37 Status Register Field Descriptions (Continued)

Fields

Description
Read /
Write

Reset
State ComplianceName Bits

Encoding Meaning

0 Access not allowed
1 Access allowed

Encoding Meaning

0 64-bit operations are not enabled in
User Mode

1 64-bit operations are enabled in User
Mode

Encoding Meaning

0 Normal
1 Bootstrap

9.30 Status Register (CP Register 12, Select 0)

MIPS® Architecture For Programmers Volume III: The MIPS64® and microMIPS64™ Privileged Resource Architecture, Revi-
sion 5.04 196

SR 20 Indicates that the entry through the reset exception vector
was due to a Soft Reset:

If this bit is not implemented, it must be ignored on write
and read as zero.
Software should not write a 1 to this bit when its value is a
0, thereby causing a 0-to-1 transition. If such a transition is
caused by software, it is UNPREDICTABLE whether
hardware ignores or accepts the write.

R/W 1 for Soft
Reset; 0 oth-

erwise

Required if Soft
Reset is imple-
mented

NMI 19 Indicates that the entry through the reset exception vector
was due to an NMI exception:

If this bit is not implemented, it must be ignored on write
and read as zero.
Software should not write a 1 to this bit when its value is a
0, thereby causing a 0-to-1 transition. If such a transition is
caused by software, it is UNPREDICTABLE whether
hardware ignores or accepts the write.

R/W 1 for NMI; 0
otherwise

Required if NMI
is implemented

ASE 18 This bit is reserved for the MCU ASE.
If MCU ASE is not implemented, then this bit must be
written as zero; returns zero on read.

0 if MCU
ASE is not

implemented

0 if MCU
ASE is not

implemented

Required for
MCU ASE; Oth-
erwise Reserved

Impl 17..16 These bits are implementation-dependent and are not
defined by the architecture. If th y are not implemented,
they must be ignored on write and read as zero.

Undefine Optional

IM7..IM2 15..10 Interrupt Mask: Controls the enabling of each of the hard-
ware interrupts. Refer to “Interrupts” on page 80 for a
complete discussion of enabled interrupts.

In implementations of Release 2 of the Architecture in
which EIC interrupt mode is enabled (Config3VEIC = 1),
these bits take on a different meaning and are interpreted
as the IPL field, described bel w.

R/W Undefine Required

Table 9.37 Status Register Field Descriptions (Continued)

Fields

Description
Read /
Write

Reset
State ComplianceName Bits

Encoding Meaning

0 Not Soft Reset (NMI or Reset)
1 Soft Reset

Encoding Meaning

0 Not NMI (Soft Reset or Reset)
1 NMI

Encoding Meaning

0 Interrupt request disabled
1 Interrupt request enabled

197MIPS® Architecture For Programmers Volume III: The MIPS64® and microMIPS64™ Privileged Resource Architecture, Re-
vision 5.04

IPL 15..10 Interrupt Priority Level.
In implementations of Release 2 of the Architecture (and
subsequent releases) in which EIC interrupt mode is
enabled (Config3VEIC = 1), this field is the encode
(0..63) value of the current IPL. An interrupt will be sig-
naled only if the requested IPL is higher than this value.
If EIC interrupt mode is not enabled (Config3VEIC = 0),
these bits take on a different meaning and are interpreted
as the IM7..IM2 bits, described above.

R/W Undefine Optional (Release
2 and EIC inter-
rupt mode only)

IM1..IM0 9..8 Interrupt Mask: Controls the enabling of each of the soft-
ware interrupts. Refer to “Interrupts” on page 80 for a
complete discussion of enabled interrupts.

In implementations of Release 2 of the Architecture in
which EIC interrupt mode is enabled (Config3VEIC = 1),
these bits are writable, but have no effect on the interrupt
system.

R/W Undefine Required

KX 7 Enables the following behavior:
• Access to 64-bit Kernel Segments
• Use of the XTLB Refill ector for references to Kernel

Segments

If 64-bit addressing is not implemented, this bit must be
ignored on write and read as zero.

R/W Undefine Required for 64-
bit Addressing

Table 9.37 Status Register Field Descriptions (Continued)

Fields

Description
Read /
Write

Reset
State ComplianceName Bits

Encoding Meaning

0 Interrupt request disabled
1 Interrupt request enabled

Encoding Meaning

0 Access to 64-bit Kernel Segments is
disabled; TLB Refil Vector is used for
references to Kernel Segments

1 Access to 64-bit Kernel Segments is
enabled; XTLB Refill ector is used
for references to Kernel Segments

9.30 Status Register (CP Register 12, Select 0)

MIPS® Architecture For Programmers Volume III: The MIPS64® and microMIPS64™ Privileged Resource Architecture, Revi-
sion 5.04 198

SX 6 If Supervisor Mode is implemented, enables the follow-
ing behavior:
• Access to 64-bit Supervisor Segments
• Use of the XTLB Refill ector for references to Super-

visor Segments

If Supervisor Mode is not implemented, it is implementa-
tion-dependent whether access to what would normally be
64-bit supervisor address space is enabled with the SX or
KX bit.
If 64-bit addressing is not implemented, this bit must be
ignored on write and read as zero.

R/W Undefine Required if both
Supervisor Mode
and 64-bit
addressing are
implemented

UX 5 Enables the following behavior:
• Access to 64-bit User Segments
• Use of the XTLB Refill ector for references to User

Segments
• Execution of instructions which perform 64-bit opera-

tions while the processor is operating in User Mode

If 64-bit addressing is not implemented, this bit must be
ignored on write and read as zero.

R/W Undefine Required for 64-
bit Addressing

Table 9.37 Status Register Field Descriptions (Continued)

Fields

Description
Read /
Write

Reset
State ComplianceName Bits

Encoding Meaning

0 Access to 64-bit Supervisor Segments
is disabled; TLB Refill ector is used
for references to Supervisor Segments

1 Access to 64-bit Supervisor Segments
is enabled; XTLB Refil Vector is used
for references to Supervisor Segments

Encoding Meaning

0 Access to 64-bit User Segments is dis-
abled; TLB Refill ector is used for
references to User Segments; Execu-
tion of instructions which perform 64-
bit operations is disallowed while the
processor is running in User Mode

1 Access to 64-bit User Segments is
enabled; XTLB Refill ector is used
for references to User Segments; Exe-
cution of instructions which perform
64-bit operations is allowed while the
processor is running in User Mode

199MIPS® Architecture For Programmers Volume III: The MIPS64® and microMIPS64™ Privileged Resource Architecture, Re-
vision 5.04

KSU 4..3 If Supervisor Mode is implemented, the encoding of this
field denotes the base operating mode of the processo .
See “MIPS64 and microMIPS64 Operating Modes” on
page 22 for a full discussion of operating modes. The
encoding of this field is

Note: This fiel overlaps the UM and R0 fields described
below.

R/W Undefine Required if
Supervisor Mode
is implemented;
Optional other-
wise

UM 4 If Supervisor Mode is not implemented, this bit denotes
the base operating mode of the processor. See “MIPS64
and microMIPS64 Operating Modes” on page 22 for a full
discussion of operating modes. The encoding of this bit is:

Note: This bit overlaps the KSU field, described ab ve.

R/W Undefine Required

R0 3 If Supervisor Mode is not implemented, this bit is
reserved. This bit must be ignored on write and read as
zero.
Note: This bit overlaps the KSU field, described ab ve.

R 0 Reserved

ERL 2 Error Level; Set by the processor when a Reset, Soft
Reset, NMI or Cache Error exception are taken.

When ERL is set:
• The processor is running in kernel mode
• Hardware and software interrupts are disabled
• The ERET instruction will use the return address held in

ErrorEPC instead of EPC
• Segment kuseg is treated as an unmapped and uncached

region. See “Address Translation for the kuseg Segment
when StatusERL = 1” on page 37. This allows main
memory to be accessed in the presence of cache errors.
The operation of the processor is UNDEFINED if the
ERL bit is set while the processor is executing instruc-
tions from kuseg.

R/W 1 Required

Table 9.37 Status Register Field Descriptions (Continued)

Fields

Description
Read /
Write

Reset
State ComplianceName Bits

Encoding Meaning

0b00 Base mode is Kernel Mode
0b01 Base mode is Supervisor Mode
0b10 Base mode is User Mode
0b11 Reserved. The operation of the proces-

sor is UNDEFINED if this value is
written to the KSU fiel

Encoding Meaning

0 Base mode is Kernel Mode
1 Base mode is User Mode

Encoding Meaning

0 Normal level
1 Error level

9.30 Status Register (CP Register 12, Select 0)

MIPS® Architecture For Programmers Volume III: The MIPS64® and microMIPS64™ Privileged Resource Architecture, Revi-
sion 5.04 200

Programming Note:

In Release 2 of the Architecture, the EHB instruction can be used to make interrupt state changes visible when the IM,
IPL, ERL, EXL, or IE field of the Status register are written. See “Software Hazards and the Interrupt System” on
page 91.

EXL 1 Exception Level; Set by the processor when any exception
other than Reset, Soft Reset, NMI or Cache Error excep-
tion are taken.

 When EXL is set:
• The processor is running in Kernel Mode
• Hardware and software interrupts are disabled.
• TLB/XTLB Refil exceptions use the general exception

vector instead of the TLB/XTLB Refill ectors.
• EPC, CauseBD and SRSCtl (implementations of Release

2 of the Architecture only) will not be updated if
another exception is taken

R/W Undefine Required

IE 0 Interrupt Enable: Acts as the master enable for software
and hardware interrupts:

In Release 2 of the Architecture (and subsequent releases),
this bit may be modified separately via the DI and E
instructions.

R/W Undefine Required

1. The TS bit originally indicated a “TLB Shutdown” condition in which circuits detected multiple TLB matches and shutdown the
TLB to prevent physical damage. In newer designs, multiple TLB matches do not cause physical damage to the TLB structure, so the
TS bit retains its name, but is simply an indicator to the machine check exception handler that multiple TLB matches were detected
and reported by the processor.

Table 9.37 Status Register Field Descriptions (Continued)

Fields

Description
Read /
Write

Reset
State ComplianceName Bits

Encoding Meaning

0 Normal level
1 Exception level

Encoding Meaning

0 Interrupts are disabled
1 Interrupts are enabled

201MIPS® Architecture For Programmers Volume III: The MIPS64® and microMIPS64™ Privileged Resource Architecture, Re-
vision 5.04

9.31 IntCtl Register (CP0 Register 12, Select 1)

Compliance Level: Required (Release 2).

The IntCtl register controls the expanded interrupt capability added in Release 2 of the Architecture, including vec-
tored interrupts and support for an external interrupt controller. This register does not exist in implementations of
Release 1 of the Architecture.

Figure 9.32 shows the format of the IntCtl register; Table 9.38 describes the IntCtl register fields

.

Figure 9.32 IntCtl Register Format
31 29 28 26 25 23 22 14 13 10 9 5 4 0

IPTI IPPCI IPFDC MCU ASE 0000 VS 0

Table 9.38 IntCtl Register Field Descriptions

Fields

Description
Read /
Write

Reset
State ComplianceName Bits

IPTI 31..29 For Interrupt Compatibility and Vectored Interrupt modes,
this fiel specifie the IP number to which the Timer Inter-
rupt request is merged, and allows software to determine
whether to consider CauseTI for a potential interrupt.

The value of this field i UNPREDICTABLE if External
Interrupt Controller Mode is both implemented and
enabled. The external interrupt controller is expected to
provide this information for that interrupt mode.

R Preset by
hardware or
Externally
Set

Required

Encoding IP bit
Hardware

Interrupt Source

2 2 HW0
3 3 HW1
4 4 HW2
5 5 HW3
6 6 HW4
7 7 HW5

9.31 IntCtl Register (CP0 Register 12, Select 1)

MIPS® Architecture For Programmers Volume III: The MIPS64® and microMIPS64™ Privileged Resource Architecture, Revi-
sion 5.04 202

IPPCI 28..26 For Interrupt Compatibility and Vectored Interrupt modes,
this field specifies the IP number to which the Perfo
mance Counter Interrupt request is merged, and allows
software to determine whether to consider CausePCI for a
potential interrupt.

The value of this field i UNPREDICTABLE if External
Interrupt Controller Mode is both implemented and
enabled. The external interrupt controller is expected to
provide this information for that interrupt mode.
If performance counters are not implemented (Config1PC
= 0), this field returns zero on read

R Preset by
hardware or
Externally
Set

Optional (Per-
formance
Counters
Implemented)

IPFDC 25..23 For Interrupt Compatibility and Vectored Interrupt modes,
this field specifies the IP number to which the ast Debug
Channel Interrupt request is merged, and allows software
to determine whether to consider CauseFDCI for a poten-
tial interrupt.

The value of this field i UNPREDICTABLE if External
Interrupt Controller Mode is both implemented and
enabled. The external interrupt controller is expected to
provide this information for that interrupt mode.
If EJTAG FDC is not implemented, this field returns zer
on read.

R Preset by
hardware or
Externally
Set

Optional
(EJTAG Fast
Debug Chan-
nel Imple-
mented)

MCU ASE 22..14 These bits are reserved for the MicroController ASE.

If that ASE is not implemented, must be written as zero;
returns zero on read.

0 0 Reserved

Table 9.38 IntCtl Register Field Descriptions (Continued)

Fields

Description
Read /
Write

Reset
State ComplianceName Bits

Encoding IP bit
Hardware

Interrupt Source

2 2 HW0
3 3 HW1
4 4 HW2
5 5 HW3
6 6 HW4
7 7 HW5

Encoding IP bit
Hardware

Interrupt Source

2 2 HW0
3 3 HW1
4 4 HW2
5 5 HW3
6 6 HW4
7 7 HW5

203MIPS® Architecture For Programmers Volume III: The MIPS64® and microMIPS64™ Privileged Resource Architecture, Re-
vision 5.04

0 22..10 Must be written as zero; returns zero on read. 0 0 Reserved

VS 9..5 Vector Spacing. If vectored interrupts are implemented (as
denoted by Config3VInt or Config3VEIC), this field speci
fies the spacing between ectored interrupts.

All other values are reserved. The operation of the proces-
sor is UNDEFINED if a reserved value is written to this
field
If neither EIC interrupt mode nor VI mode are imple-
mented (Config3VEIC = 0 and Config3VInt = 0), this fiel
is ignored on write and reads as zero.

R/W 0 Optional

0 4..0 Must be written as zero; returns zero on read. 0 0 Reserved

Table 9.38 IntCtl Register Field Descriptions (Continued)

Fields

Description
Read /
Write

Reset
State ComplianceName Bits

Encoding

Spacing Between Vectors

(hex) (decimal)

0x00 0x000 0
0x01 0x020 32
0x02 0x040 64
0x04 0x080 128
0x08 0x100 256
0x10 0x200 512

9.32 SRSCtl Register (CP0 Register 12, Select 2)

MIPS® Architecture For Programmers Volume III: The MIPS64® and microMIPS64™ Privileged Resource Architecture, Revi-
sion 5.04 204

9.32 SRSCtl Register (CP0 Register 12, Select 2)

Compliance Level: Required (Release 2).

The SRSCtl register controls the operation of GPR shadow sets in the processor. This register does not exist in imple-
mentations of the architecture prior to Release 2.

Figure 9.33 shows the format of the SRSCtl register; Table 9.39 describes the SRSCtl register fields

Figure 9.33 SRSCtl Register Format
31 30 29 26 25 22 21 18 17 16 15 12 11 10 9 6 5 4 3 0

0
00 HSS 0

00 00 EICSS 0
00 ESS 0

00 PSS 0
00 CSS

Table 9.39 SRSCtl Register Field Descriptions

Fields

Description
Read /
Write

Reset
State ComplianceName Bits

0 31..30 Must be written as zeros; returns zero on read. 0 0 Reserved

HSS 29..26 Highest Shadow Set. This field contains the highes
shadow set number that is implemented by this processor.
A value of zero in this field indicates that only the norma
GPRs are implemented. A non-zero value in this fiel
indicates that the implemented shadow sets are numbered
0. n, where n is the value of the field
The value in this field also represents the highest alue
that can be written to the ESS, EICSS, PSS, and CSS field
of this register, or to any of the field of the SRSMap reg-
ister. The operation of the processor is UNDEFINED if a
value larger than the one in this field is written to a y of
these other values.

R Preset by
hardware

Required

0 25..22 Must be written as zeros; returns zero on read. 0 0 Reserved

EICSS 21..18 EIC interrupt mode shadow set. If Config3VEIC is 1 (EIC
interrupt mode is enabled), this field is loaded from th
external interrupt controller for each interrupt request and
is used in place of the SRSMap register to select the cur-
rent shadow set for the interrupt.
See “External Interrupt Controller Mode” on page 87 for a
discussion of EIC interrupt mode. If Config3VEIC is 0,
this fiel must be written as zero, and returns zero on read.

R Undefine Required (EIC
interrupt mode

only)

0 17..16 Must be written as zeros; returns zero on read. 0 0 Reserved

205MIPS® Architecture For Programmers Volume III: The MIPS64® and microMIPS64™ Privileged Resource Architecture, Re-
vision 5.04

ESS 15..12 Exception Shadow Set. This fiel specifie the shadow set
to use on entry to Kernel Mode caused by any exception
other than a vectored interrupt.
The operation of the processor is UNDEFINED if soft-
ware writes a value into this field that is greater than th
value in the HSS field

R/W 0 Required

0 11..10 Must be written as zeros; returns zero on read. 0 0 Reserved

PSS 9..6 Previous Shadow Set. If GPR shadow registers are imple-
mented, and with the exclusions noted in the next para-
graph, this field is copied from the CSS field when
exception or interrupt occurs. An ERET instruction copies
this value back into the CSS field i StatusBEV = 0.
This field is not updated on a y exception which sets
StatusERL to 1 (i.e., NMI or cache error), an entry into
EJTAG Debug mode, or any exception or interrupt that
occurs with StatusEXL = 1, or StatusBEV = 1.
The operation of the processor is UNDEFINED if soft-
ware writes a value into this field that is greater than th
value in the HSS field

R/W 0 Required

0 5..4 Must be written as zeros; returns zero on read. 0 0 Reserved

CSS 3..0 Current Shadow Set. If GPR shadow registers are imple-
mented, this field is the number of the current GPR set
With the exclusions noted in the next paragraph, this fiel
is updated with a new value on any interrupt or exception,
and restored from the PSS field on an ERE . Table 9.40
describes the various sources from which the CSS field i
updated on an exception or interrupt.
This field is not updated on a y exception which sets
StatusERL to 1 (i.e., NMI or cache error), an entry into
EJTAG Debug mode, or any exception or interrupt that
occurs with StatusEXL = 1, or StatusBEV = 1. Neither is
it updated on an ERET with StatusERL = 1 or StatusBEV
= 1.
The value of CSS can be changed directly by software
only by writing the PSS field and xecuting an ERET
instruction.

R 0 Required

Table 9.40 Sources for new SRSCtlCSS on an Exception or Interrupt

Exception Type Condition SRSCtlCSS Source Comment

Exception All SRSCtlESS

Non-Vectored Inter-
rupt

CauseIV = 0 SRSCtlESS Treat as exception

Table 9.39 SRSCtl Register Field Descriptions (Continued)

Fields

Description
Read /
Write

Reset
State ComplianceName Bits

9.32 SRSCtl Register (CP0 Register 12, Select 2)

MIPS® Architecture For Programmers Volume III: The MIPS64® and microMIPS64™ Privileged Resource Architecture, Revi-
sion 5.04 206

Programming Note:

A software change to the PSS fiel creates an instruction hazard between the write of the SRSCtl register and the use
of a RDPGPR or WRPGPR instruction. This hazard must be cleared with a JR.HB or JALR.HB instruction as
described in “Hazard Clearing Instructions and Events” on page 118. A hardware change to the PSS fiel as the result
of interrupt or exception entry is automatically cleared for the execution of the firs instruction in the interrupt or
exception handler.

Vectored Interrupt CauseIV = 1 and
Config VEIC = 0 and

Config VInt = 1

SRSMapVectNum
×4+3..VectNum×4

Source is internal map register

Vectored EIC Inter-
rupt

CauseIV = 1 and
Config VEIC = 1

SRSCtlEICSS Source is external interrupt
controller.

Table 9.40 Sources for new SRSCtlCSS on an Exception or Interrupt

Exception Type Condition SRSCtlCSS Source Comment

207MIPS® Architecture For Programmers Volume III: The MIPS64® and microMIPS64™ Privileged Resource Architecture, Re-
vision 5.04

9.33 SRSMap Register (CP0 Register 12, Select 3)

Compliance Level: Required in Release 2 (and subsequent releases) of the Architecture if Additional Shadow Sets
and Vectored Interrupt Mode are Implemented

The SRSMap register contains 8 4-bit fields that pr vide the mapping from an vector number to the shadow set num-
ber to use when servicing such an interrupt. The values from this register are not used for a non-interrupt exception,
or a non-vectored interrupt (CauseIV = 0 or IntCtlVS = 0). In such cases, the shadow set number comes from SRSCt-
lESS.

If SRSCtlHSS is zero, the results of a software read or write of this register are UNPREDICTABLE.

The operation of the processor is UNDEFINED if a value is written to any fiel in this register that is greater than the
value of SRSCtlHSS.

The SRSMap register contains the shadow register set numbers for vector numbers 7..0. The same shadow set num-
ber can be established for multiple interrupt vectors, creating a many-to-one mapping from a vector to a single
shadow register set number.

Figure 9.34 shows the format of the SRSMap register; Table 9.41 describes the SRSMap register fields

Figure 9.34 SRSMap Register Format
31 28 27 24 23 20 19 16 15 12 11 8 7 4 3 0

SSV7 SSV6 SSV5 SSV4 SSV3 SSV2 SSV1 SSV0

Table 9.41 SRSMap Register Field Descriptions

Fields

Description
Read /
Write

Reset
State ComplianceName Bits

SSV7 31..28 Shadow register set number for Vector Number 7 R/W 0 Required

SSV6 27..24 Shadow register set number for Vector Number 6 R/W 0 Required

SSV5 23..20 Shadow register set number for Vector Number 5 R/W 0 Required

SSV4 19..16 Shadow register set number for Vector Number 4 R/W 0 Required

SSV3 15..12 Shadow register set number for Vector Number 3 R/W 0 Required

SSV2 11..8 Shadow register set number for Vector Number 2 R/W 0 Required

SSV1 7..4 Shadow register set number for Vector Number 1 R/W 0 Required

SSV0 3..0 Shadow register set number for Vector Number 0 R/W 0 Required

9.34 Cause Register (CP0 Register 13, Select 0)

MIPS® Architecture For Programmers Volume III: The MIPS64® and microMIPS64™ Privileged Resource Architecture, Revi-
sion 5.04 208

9.34 Cause Register (CP0 Register 13, Select 0)

Compliance Level: Required.

The Cause register primarily describes the cause of the most recent exception. In addition, fields also control soft
ware interrupt requests and the vector through which interrupts are dispatched. With the exception of the IP1..0, DC,
IV, and WP fields, all fields in t Cause register are read-only. Release 2 of the Architecture added optional support
for an External Interrupt Controller (EIC) interrupt mode, in which IP7..2 are interpreted as the Requested Interrupt
Priority Level (RIPL).

Figure 9.35 shows the format of the Cause register; Table 9.42 describes the Cause register fields

Figure 9.35 Cause Register Format
31 30 29 28 27 26 25 24 23 22 21 20 17 15 10 9 8 7 6 2 1 0

BD TI CE DC PCI ASE IV WP FDCI 000 ASE IP9..IP2 IP1..IP0 0 Exc Code 0

ASE RIPL

Table 9.42 Cause Register Field Descriptions

Fields

Description
Read /
Write

Reset
State ComplianceName Bits

BD 31 Indicates whether the last exception taken occurred in a
branch delay slot:

The processor updates BD only if StatusEXL was zero
when the exception occurred.

R Undefine Required

TI 30 Timer Interrupt. In an implementation of Release 2 of the
Architecture, this bit denotes whether a timer interrupt is
pending (analogous to the IP bits for other interrupt
types):

In an implementation of Release 1 of the Architecture, this
bit must be written as zero and returns zero on read.

R Undefine Required(Release
2)

CE 29..28 Coprocessor unit number referenced when a Coprocessor
Unusable exception is taken. This field is loaded by hard
ware on every exception, but is UNPREDICTABLE for
all exceptions except for Coprocessor Unusable.

R Undefine Required

Encoding Meaning

0 Not in delay slot
1 In delay slot

Encoding Meaning

0 No timer interrupt is pending
1 Timer interrupt is pending

209MIPS® Architecture For Programmers Volume III: The MIPS64® and microMIPS64™ Privileged Resource Architecture, Re-
vision 5.04

DC 27 Disable Count register. In some power-sensitive applica-
tions, the Count register is not used but may still be the
source of some noticeable power dissipation. This bit
allows the Count register to be stopped in such situations.

In an implementation of Release 1 of the Architecture, this
bit must be written as zero, and returns zero on read.

R/W 0 Required(Release
2)

PCI 26 Performance Counter Interrupt. In an implementation of
Release 2 of the Architecture (and subsequent releases),
this bit denotes whether a performance counter interrupt is
pending (analogous to the IP bits for other interrupt types):

In an implementation of Release 1 of the Architecture, or
if performance counters are not implemented (Config1PC
= 0), this bit must be written as zero and returns zero on
read.

R Undefine Required(Release
2 and perfor-

mance counters
implemented)

ASE 25:24, 17:16 These bits are reserved for the MCU ASE.
If MCU ASE is not implemented, these bits return zero on
reads and must be written with zeros.

Required for
MCU ASE; Oth-
erwise Reserved

IV 23 Indicates whether an interrupt exception uses the general
exception vector or a special interrupt vector:

In implementations of Release 2 of the architecture (and
subsequent releases), if the CauseIV is 1 and StatusBEV is
0, the special interrupt vector represents the base of the
vectored interrupt table.

R/W Undefine Required

Table 9.42 Cause Register Field Descriptions (Continued)

Fields

Description
Read /
Write

Reset
State ComplianceName Bits

Encoding Meaning

0 Enable counting of Count register
1 Disable counting of Count register

Encoding Meaning

0 No performance counter interrupt is
pending

1 Performance counter interrupt is pend-
ing

Encoding Meaning

0 Use the general exception vector
(0x180)

1 Use the special interrupt vector
(0x200)

9.34 Cause Register (CP0 Register 13, Select 0)

MIPS® Architecture For Programmers Volume III: The MIPS64® and microMIPS64™ Privileged Resource Architecture, Revi-
sion 5.04 210

WP 22 Indicates that a watch exception was deferred because
StatusEXL or StatusERL were a one at the time the watch
exception was detected. This bit both indicates that the
watch exception was deferred, and causes the exception to
be initiated once StatusEXL and StatusERL are both zero.
As such, software must clear this bit as part of the watch
exception handler to prevent a watch exception loop.
Software should not write a 1 to this bit when its value is a
0, thereby causing a 0-to-1 transition. If such a transition is
caused by software, it is UNPREDICTABLE whether
hardware ignores the write, accepts the write with no side
effects, or accepts the write and initiates a watch exception
once StatusEXL and StatusERL are both zero.
If watch registers are not implemented, this bit must be
ignored on write and read as zero.

R/W Undefine Required if watch
registers are
implemented

FDCI 21 Fast Debug Channel Interrupt. This bit denotes whether a
FDC interrupt is pending:

R Undefine Required

IP7..IP2 15..10 Indicates an interrupt is pending:

In implementations of Release 1 of the Architecture, timer
and performance-counter interrupts are combined in an
implementation-dependent way with hardware interrupt 5.
In implementations of Release 2 of the Architecture (and
subsequent releases) in which EIC interrupt mode is not
enabled (Config3VEIC = 0), timer and performance
counter interrupts are combined in an implementation-
dependent way with any hardware interrupt. If EIC inter-
rupt mode is enabled (Config3VEIC = 1), these bits take
on a different meaning and are interpreted as the RIPL
field, described bel w.

R Undefine Required

Table 9.42 Cause Register Field Descriptions (Continued)

Fields

Description
Read /
Write

Reset
State ComplianceName Bits

Encoding Meaning

0 No FDC interrupt is pending
1 FDC interrupt is pending

Bit Name Meaning

15 IP7 Hardware interrupt 5

14 IP6 Hardware interrupt 4

13 IP5 Hardware interrupt 3

12 IP4 Hardware interrupt 2

11 IP3 Hardware interrupt 1

10 IP2 Hardware interrupt 0

211MIPS® Architecture For Programmers Volume III: The MIPS64® and microMIPS64™ Privileged Resource Architecture, Re-
vision 5.04

RIPL 15..10 Requested Interrupt Priority Level.
In implementations of Release 2 of the Architecture (and
subsequent releases) in which EIC interrupt mode is
enabled (Config3VEIC = 1), this field is the encode
(0..63) value of the requested interrupt. A value of zero
indicates that no interrupt is requested.
If EIC interrupt mode is not enabled (Config3VEIC = 0),
these bits take on a different meaning and are interpreted
as the IP7..IP2 bits, described above.

R Undefine Optional (Release
2 and EIC inter-
rupt mode only)

IP1..IP0 9..8 Controls the request for software interrupts:

An implementation of Release 2 of the Architecture (and
subsequent releases) which also implements EIC interrupt
mode exports these bits to the external interrupt controller
for prioritization with other interrupt sources.

R/W Undefine Required

ExcCode 6..2 Exception code - see Table 9.43 R Undefine Required

0 25:24,
20..16, 7,

1..0

Must be written as zero; returns zero on read. 0 0 Reserved

Table 9.43 Cause Register ExcCode Field

Exception Code Value

Mnemonic DescriptionDecimal Hexadecimal

0 0x00 Int Interrupt

1 0x01 Mod TLB modification xception

2 0x02 TLBL TLB exception (load or instruction fetch)

3 0x03 TLBS TLB exception (store)

4 0x04 AdEL Address error exception (load or instruction fetch)

5 0x05 AdES Address error exception (store)

6 0x06 IBE Bus error exception (instruction fetch)

7 0x07 DBE Bus error exception (data reference: load or store)

8 0x08 Sys Syscall exception

9 0x09 Bp Breakpoint exception. If EJTAG is implemented and an SDBBP
instruction is executed while the processor is running in EJTAG
Debug Mode, this value is written to the DebugDExcCode field t
denote an SDBBP in Debug Mode.

10 0x0a RI Reserved instruction exception

Table 9.42 Cause Register Field Descriptions (Continued)

Fields

Description
Read /
Write

Reset
State ComplianceName Bits

Bit Name Meaning

9 IP1 Request software interrupt 1
8 IP0 Request software interrupt 0

9.34 Cause Register (CP0 Register 13, Select 0)

MIPS® Architecture For Programmers Volume III: The MIPS64® and microMIPS64™ Privileged Resource Architecture, Revi-
sion 5.04 212

Programming Note:

In Release 2 of the Architecture (and the subsequent releases), the EHB instruction can be used to make interrupt state
changes visible when the IP1..0 fiel of the Cause register is written. See “Software Hazards and the Interrupt
System” on page 91.

11 0x0b CpU Coprocessor Unusable exception

12 0x0c Ov Arithmetic Overfl w exception

13 0x0d Tr Trap exception

14 0x0e MSAFPE MSA Floating Point exception

15 0x0f FPE Floating point exception

16-17 0x10-0x11 - Available for implementation-dependent use

18 0x12 C2E Reserved for precise Coprocessor 2 exceptions

19 0x13 TLBRI TLB Read-Inhibit exception

20 0x14 TLBXI TLB Execution-Inhibit exception

21 0x15 MSADis MSA Disabled exception

22 0x16 MDMX Previously MDMX Unusable Exception (MDMX ASE). MDMX
deprecated with Revision 5.

23 0x17 WATCH Reference to WatchHi/WatchLo address

24 0x18 MCheck Machine check

25 0x19 Thread Thread Allocation, Deallocation, or Scheduling Exceptions (MIPS®
MT Module)

26 0x1a DSPDis DSP Module State Disabled exception
(MIPS® DSP Module)

27 0x1b GE Virtualized Guest Exception

28-29 0x1c - 0x1d - Reserved

30 0x1e CacheErr Cache error. In normal mode, a cache error exception has a dedi-
cated vector and the Cause register is not updated. If EJTAG is
implemented and a cache error occurs while in Debug Mode, this
code is written to the DebugDExcCode fiel to indicate that re-entry to
Debug Mode was caused by a cache error.

31 0x1f - Reserved

Table 9.43 Cause Register ExcCode Field

Exception Code Value

Mnemonic DescriptionDecimal Hexadecimal

213MIPS® Architecture For Programmers Volume III: The MIPS64® and microMIPS64™ Privileged Resource Architecture, Re-
vision 5.04

9.35 NestedExc (CP0 Register 13, Select 5)

Compliance Level: Optional.

The Nested Exception (NestedExc) register is a read-only register containing the values of StatusEXL and StatusERL

prior to acceptance of the current exception.

This register is part of the Nested Fault feature, existence of the register can be determined by reading the
Config5NFExists bit.

Figure 9.36 shows the format of the NestedExc register; Table 9.44 describes the NestedExc register fields

Figure 9.36 NestedExc Register Format
31 3 2 1 0

0 ERL EXL 0

Table 9.44 NestedExc Register Field Descriptions

Fields

Description
Read /
Write

Reset
State ComplianceName Bits

0 31..3 Reserved, read as 0. R0 0 Required

ERL 2 Value of StatusERL prior to acceptance of current excep-
tion.

Updated by all exceptions that would set either StatusEXL
or StatusERL. Not updated by Debug exceptions.

R Undefine Required

EXL 1 Value of StatusEXL prior to acceptance of current excep-
tion.

Updated by exceptions which would update EPC if
StatusEXL is not set (MCheck, Interrupt, Address Error,
all TLB exceptions, Bus Error, CopUnusable, Reserved
Instruction, Overfl w, Trap, Syscall, FPU, etc.) . For these
exception types, this register fiel is updated regardless of
the value of StatusEXL.

Not updated by exception types which update ErrorEPC -
(Reset, Soft Reset, NMI, Cache Error). Not updated by
Debug exceptions.

R Undefine Required

0 0 Reserved, read as 0. R0 0 Required

9.36 Exception Program Counter (CP0 Register 14, Select 0)

MIPS® Architecture For Programmers Volume III: The MIPS64® and microMIPS64™ Privileged Resource Architecture, Revi-
sion 5.04 214

9.36 Exception Program Counter (CP0 Register 14, Select 0)

Compliance Level: Required.

The Exception Program Counter (EPC) is a read/write register that contains the address at which processing resumes
after an exception has been serviced. All bits of the EPC register are significant and must be writable

Unless the EXL bit in the Status register is already a 1, the processor writes the EPC register when an exception
occurs.

• For synchronous (precise) exceptions, EPC contains either:

• the virtual address of the instruction that was the direct cause of the exception, or

• the virtual address of the immediately preceding branch or jump instruction, when the exception causing
instruction is in a branch delay slot, and the Branch Delay bit in the Cause register is set.

• For asynchronous (imprecise) exceptions, EPC contains the address of the instruction at which to resume execu-
tion.

The processor reads the EPC register as the result of execution of the ERET instruction.

Software may write the EPC register to change the processor resume address and read the EPC register to determine
at what address the processor will resume.

Figure 9.37 shows the format of the EPC register; Table 9.45 describes the EPC register fields

9.36.1 Special Handling of the EPC Register in Processors that Implement MIPS16e
ASE or microMIPS64 Base Architecture

In processors that implement the MIPS16e ASE or microMIPS64 base architecture, the EPC register requires special
handling.

When the processor writes the EPC register, it combines the address at which processing resumes with the value of
the ISA Mode register:

Figure 9.37 EPC Register Format
63 0

EPC

Table 9.45 EPC Register Field Descriptions

Fields

Description
Read /
Write

Reset
State ComplianceName Bits

EPC 63..0 Exception Program Counter R/W Undefine Required

215MIPS® Architecture For Programmers Volume III: The MIPS64® and microMIPS64™ Privileged Resource Architecture, Re-
vision 5.04

EPC ← resumePC63..1 || ISAMode0

“resumePC” is the address at which processing resumes, as described above.

When the processor reads the EPC register, it distributes the bits to the PC and ISAMode registers:

PC ← EPC63..1 || 0
ISAMode ← EPC0

Software reads of the EPC register simply return to a GPR the last value written with no interpretation. Software
writes to the EPC register store a new value which is interpreted by the processor as described above.

9.36 Exception Program Counter (CP0 Register 14, Select 0)

MIPS® Architecture For Programmers Volume III: The MIPS64® and microMIPS64™ Privileged Resource Architecture, Revi-
sion 5.04 216

217MIPS® Architecture For Programmers Volume III: The MIPS64® and microMIPS64™ Privileged Resource Architecture, Re-
vision 5.04

9.37 Nested Exception Program Counter (CP0 Register 14, Select 2)

Compliance Level: Optional.

The Nested Exception Program Counter (NestedEPC) is a read/write register with the same behavior as the EPC reg-
ister except that:

• The NestedEPC register ignores the value of StatusEXL and is therefore updated on the occurance of any excep-
tion, including nested exceptions.

• The NestedEPC register is not used by the ERET/DERET/IRET instructions. Software is required to copy the
value of the NestedEPC register to the EPC register if it is desired to return to the address stored in NestedEPC.

This register is part of the Nested Fault feature, existence of the register can be determined by reading the
Config5NFExists bit.

Figure 9.38 shows the format of the NestedEPC register; Table 9.46 describes the NestedEPC register fields

Figure 9.38 NestedEPC Register Format
63 0

NestedEPC

Table 9.46 NestedEPC Register Field Descriptions

Fields

Description
Read /
Write

Reset
State ComplianceName Bits

NestedEPC 63..0 Nested Exception Program Counter

Updated by exceptions which would update EPC if
StatusEXL is not set (MCheck, Interrupt, Address Error,
all TLB exceptions, Bus Error, CopUnusable, Reserved
Instruction, Overfl w, Trap, Syscall, FPU, etc.) . For these
exception types, this register fiel is updated regardless of
the value of StatusEXL.

Not updated by exception types which update ErrorEPC -
(Reset, Soft Reset, NMI, Cache Error).
Not updated by Debug exceptions.

R/W Undefine Required

9.38 Processor Identification (CP0 Register 15, Select 0)

MIPS® Architecture For Programmers Volume III: The MIPS64® and microMIPS64™ Privileged Resource Architecture, Revi-
sion 5.04 218

9.38 Processor Identification (CP0 Register 15, Select 0)

Compliance Level: Required.

The Processor Identification (PRId) register is a 32 bit read-only register that contains information identifying the
manufacturer, manufacturer options, processor identification and r vision level of the processor. Figure 9.39 shows
the format of the PRId register; Table 9.47 describes the PRId register fields

Figure 9.39 PRId Register Format
31 24 23 16 15 8 7 0

Company Options Company ID Processor ID Revision

Table 9.47 PRId Register Field Descriptions

Fields

Description
Read /
Write

Reset
State ComplianceName Bits

Company
Options

31..24 Available to the designer or manufacturer of the processor
for company-dependent options. The value in this field i
not specified by the architecture. If this field is not impl
mented, it must read as zero.

R Preset by
hardware

Optional

Company ID 23..16 Identifies the compa y that designed or manufactured the
processor.
Software can distinguish a MIPS32/microMIPS32 or
MIPS64/microMIPS64 processor from one implementing
an earlier MIPS ISA by checking this fiel for zero. If it is
non-zero the processor implements the MIPS32/
microMIPS32 or MIPS64/microMIPS64 Architecture.
Company IDs are assigned by MIPS Technologies when a
MIPS32/microMIPS32 or MIPS64/microMIPS64 license
is acquired. The encodings in this field are

R Preset by
hardware

Required

Processor ID 15..8 Identifie the type of processor. This fiel allows software
to distinguish between various processor implementations
within a single company, and is qualified by the Compa
nyID field described above. The combination of the Com-
panyID and ProcessorID fields creates a unique numbe
assigned to each processor implementation.

R Preset by
hardware

Required

Revision 7..0 Specifies the r vision number of the processor. This fiel
allows software to distinguish between one revision and
another of the same processor type. If this field is no
implemented, it must read as zero.

R Preset by
hardware

Optional

Encoding Meaning

0 Not a MIPS32/microMIPS32 or
MIPS64/microMIPS64 processor

1 MIPS Technologies, Inc.
2-255 Contact MIPS Technologies, Inc. for

the list of Company ID assignments

219MIPS® Architecture For Programmers Volume III: The MIPS64® and microMIPS64™ Privileged Resource Architecture, Re-
vision 5.04

Software should not use the fields of this r gister to infer configuration information about the processo . Rather, the
configuration r gisters should be used to determine the capabilities of the processor. Programmers who identify
cases in which the configuration r gisters are not sufficient, requiring them to r vert to check on the PRId register
value, should send email to support@mips.com, reporting the specific case

9.39 EBase Register (CP0 Register 15, Select 1)

MIPS® Architecture For Programmers Volume III: The MIPS64® and microMIPS64™ Privileged Resource Architecture, Revi-
sion 5.04 220

9.39 EBase Register (CP0 Register 15, Select 1)

Compliance Level: Required (Release 2).

The EBase register is a read/write register containing the base address of the exception vectors used when StatusBEV

equals 0, and a read-only CPU number value that may be used by software to distinguish different processors in a
multi-processor system.

The EBase register provides the ability for software to identify the specific processor within a multi-processor sys
tem, and allows the exception vectors for each processor to be different, especially in systems composed of heteroge-
neous processors. Bits 31..12 of the EBase register are concatenated with zeros to form the base of the exception
vectors when StatusBEV is 0. The exception vector base address comes from the fi ed defaults (see 6.2.2 “Exception
Vector Locations” on page 93) when StatusBEV is 1, or for any EJTAG Debug exception. The reset state of bits 31..12
of the EBase register initialize the exception base register to 0xFFFF.FFFF.8000.0000, providing backward
compatibility with Release 1 implementations.

If the write-gate bit is not implemented, bits 31..30 of the EBase register are fi ed with the value 0b10,and the addi-
tion of the base address and the exception offset is done inhibiting a carry between bit 29 and bit 30 of the fina
exception address. The combination of these two restrictions forces the final xception address to be in the kseg0 or
kseg1 unmapped virtual address segments. For cache error exceptions, bit 29 is forced to a 1 in the ultimate exception
base address so that this exception always runs in the kseg1 unmapped, uncached virtual address segment.

The operation of the EBase register can be optionally extended to allow the upper bits of the Exception Base field t
be written. This allows exception vectors to be placed anywhere in the address space. To ensure backward compati-
bility with MIPS64, the write-gate bit must be set before the upper bits can be changed. For the write-gate case, the
full set of bits 63..12 are used to compute the vector location. Software can detect the existence of the write-gate by
writing one to that bit position and checking if the bit was set.

The addition of the base address and the exception offset is performed inhibiting a carry between bits 29 and 30 of the
final xception address.

If the value of the exception base register is to be changed, this must be done with StatusBEV equal 1. The operation
of the processor is UNDEFINED if the Exception Base field is written with a di ferent value when StatusBEV is 0.

Figure 9.40 shows the format of the EBase register if the write-gate is not implemented. ; Table 9.48 describes the
EBase register fields

Figure 9.40 EBase Register Format
31 30 29 12 11 10 9 0

1 0 Exception Base 0 0 CPUNum

Table 9.48 EBase Register Field Descriptions

Fields

Description
Read /
Write

Reset
State ComplianceName Bits

1 31 This bit is ignored on write and returns one on read. R 1 Required

221MIPS® Architecture For Programmers Volume III: The MIPS64® and microMIPS64™ Privileged Resource Architecture, Re-
vision 5.04

Figure 9.41 shows the format of the EBase register if the write-gate is implemented. Table 9.49 describes the EBase
register fields

0 30 This bit is ignored on write and returns zero on read. R 0 Required

Exception
Base

29..12 In conjunction with bits 31..30, this fiel specifie the base
address of the exception vectors when StatusBEV is zero.

R/W 0 Required

0 11..10 Must be written as zero; returns zero on read. 0 0 Reserved

CPUNum 9..0 This field specifies the number of the CPU in a multi-pr
cessor system and can be used by software to distinguish a
particular processor from the others. The value in this fiel
is set by inputs to the processor hardware when the proces-
sor is implemented in the system environment. In a single
processor system, this value should be set to zero.

This field can also be read via RDHWR r gister 0

R Preset by
hardware
or Exter-
nally Set

Required

Figure 9.41 EBase Register Format
63 12 11 10 9 0

Exception Base W
G

0
CPUNum

Table 9.49 EBase Register Field Descriptions

Fields

Description
Read /
Write

Reset
State ComplianceName Bits

Exception
Base

63..12 This field specifies the base address of the xception vec-
tors when StatusBEV is zero.
Bits 63..30 can be written only when WG is set. When
WG is zero, these bits are unchanged on write.

R/W 0xFFFFFF
FF80000

Required

WG 11 Write gate. Bits 63..30 are unchanged on writes to EBase
when WG=0 in the value being written. The WG bit must
be set true in the written value to change the values of bits
63..30 .

R/W 0 Required

0 10 Must be written as zero; returns zero on read. R0 0 Reserved

CPUNum 9..0 This field specifies the number of the CPU in a multi-pr
cessor system and can be used by software to distinguish a
particular processor from the others. The value in this fiel
is set by inputs to the processor hardware when the proces-
sor is implemented in the system environment. In a single
processor system, this value should be set to zero.

This field can also be read via RDHWR r gister 0

R Preset or
Externally

Set

Required

Table 9.48 EBase Register Field Descriptions

Fields

Description
Read /
Write

Reset
State ComplianceName Bits

9.39 EBase Register (CP0 Register 15, Select 1)

MIPS® Architecture For Programmers Volume III: The MIPS64® and microMIPS64™ Privileged Resource Architecture, Revi-
sion 5.04 222

Programming Note:

Software must set EBase15..12 to zero in all bit positions less than or equal to the most-significan bit in the vector off-
set. This situation can only occur when a vector offset greater than 0xFFF is generated when an interrupt occurs with
VI or EIC interrupt mode enabled. The operation of the processor is UNDEFINED if this condition is not met. Table
9.50 shows the conditions under which each EBase bit must be set to zero. VN represents the interrupt vector number
as described in Table 6.4 and the bit must be set to zero if any of the relationships in the row are true. No EBase bits
must be set to zero if the interrupt vector spacing is 32 (or zero) bytes.

Table 9.50 Conditions Under Which EBase15..12 Must Be Zero

Interrupt Vector Spacing in Bytes (IntCtlVS
1)

1. See Table 9.38 on page 201

EBase bit 32 64 128 256 512

15 None None None None VN ≥ 63

14 None None VN ≥ 62 VN ≥ 31

13 None VN ≥ 60 VN ≥ 30 VN ≥ 15

12 VN ≥ 56 VN ≥ 28 VN ≥ 14 VN ≥ 7

223MIPS® Architecture For Programmers Volume III: The MIPS64® and microMIPS64™ Privileged Resource Architecture, Re-
vision 5.04

9.40 CDMMBase Register (CP0 Register 15, Select 2)

Compliance Level: Optional.

The 64-bit physical base address for the Common Device Memory Map facility is define by this register. This regis-
ter only exists if Config3CDMM is set to one.

For devices that implement multiple VPEs, access to this register is controlled by the VPEConf0MVP register field. I
the MVP bit is cleared, a read to this register returns all zeros and a write to this register is ignored.

Figure 9.42 has the format of the CDMMBase register, and Table 9.51 describes the register fields

9.40 CDMMBase Register (CP0 Register 15, Select 2)

MIPS® Architecture For Programmers Volume III: The MIPS64® and microMIPS64™ Privileged Resource Architecture, Revi-
sion 5.04 224

Figure 9.42 CDMMBase Register

63 60 59 11 10 9 8 0

0 CDMM_UPPER_ADDR EN CI CDMMSize

Table 9.51 CDMMBase Register Field Descriptions

Fields

Description
Read /
Write

Reset
State ComplianceName Bits

0 63:60 Must be written as zero; returns zero on read 0 0 Reserved

CDMM_UP
PER_ADDR

59:11 Bits 63:15 of the base physical address of the memory
mapped registers.

The number of implemented physical address bits is
implementation specific, see Sectio “Physical Memory”
on page 26. For the unimplemented address bits - writes
are ignored, returns zero on read.

R/W Undefine Required

EN 10 Enables the CDMM region.
If this bit is cleared, memory requests to this address
region go to regular system memory. If this bit is set,
memory requests to this region go to the CDMM logic

R/W 0 Required

CI 9 If set to 1, this indicates that the first 64-byte D vice Reg-
ister Block of the CDMM is reserved for additional regis-
ters which manage CDMM region behavior and are not IO
device registers.

R Preset Optional

CDMMSize 8:0 This field represents the number of 64-byte D vice Regis-
ter Blocks are instantiated in the core.

R Preset Required

Encoding Meaning

0 CDMM Region is disabled.
1 CDMM Region is enabled.

Encoding Meaning

0 1 DRB
1 2 DRBs
2 3 DRBs
... ...

511 512 DRBs

225MIPS® Architecture For Programmers Volume III: The MIPS64® and microMIPS64™ Privileged Resource Architecture, Re-
vision 5.04

9.41 CMGCRBase Register (CP0 Register 15, Select 3)

Compliance Level: Optional.

The 64-bit physical base address for the memory-mapped Coherency Manager Global Configuratio Register space is
reflected by this r gister. This register only exists if Config3CMGCR is set to one.

On devices that implement the MIPS MT Module, this register is instantiated once per processor.

Figure 9.43 has the format of the CMGCRBase register, and Table 9.52 describes the register fields

Figure 9.43 CMGCRBase Register

63 60 59 11 10 0

0 CMGCR_BASE_ADDR 0

Table 9.52 CMGCRBase Register Field Descriptions

Fields

Description
Read /
Write

Reset
State ComplianceName Bits

CMGCR_B
ASE_ADDR

59:11 Bits 63:15 of the base physical address of the memory-
mapped Coherency Manager GCR registers.

This register field reflects the alue of the GCR_BASE
field within the memory-mapped Coheren y Manager
GCR Base Register.

The number of implemented physical address bits is
implementation specific, see Sectio “Physical Memory”
on page 26. For the unimplemented address bits - writes
are ignored, returns zero on read.

R Preset by
hardware

(IP Configu
ration Value)

Required

0 63:60, 10:0 Must be written as zero; returns zero on read 0 0 Reserved

9.42 Configuration Register (CP0 Register 16, Select 0)

MIPS® Architecture For Programmers Volume III: The MIPS64® and microMIPS64™ Privileged Resource Architecture, Revi-
sion 5.04 226

9.42 Configuration Register (CP0 Register 16, Select 0)

Compliance Level: Required.

The Config register specifie various configuratio and capabilities information. Most of the field in the Config regis-
ter are initialized by hardware during the Reset Exception process, or are constant. Three fields K23, KU, and K0,
must be initialized by software in the reset exception handler.

Figure 9.44 shows the format of the Config register; Table 9.53 describes the Config register fields

Figure 9.44 Config Register Format
31 30 28 27 25 24 16 15 14 13 12 10 9 7 6 4 3 2 0

M K23 KU Impl BE AT AR MT 0 VI K0

Table 9.53 Config Register Field Descriptions

Fields

Description
Read /
Write Reset State ComplianceName Bits

M 31 Denotes that the Config1 register is implemented at a
select field alue of 1.

R 1 Required

K23 30:28 For processors that implement a Fixed Mapping MMU,
this field specifies the k g2 and kseg3 cacheability and
coherency attribute. For processors that do not implement
a Fixed Mapping MMU, this field reads as zero and i
ignored on write.
See “Alternative MMU Organizations” on page 286 for a
description of the Fixed Mapping MMU organization.

R/W Undefined fo
processors with a
Fixed Mapping
MMU; 0 other-

wise

Optional

KU 27:25 For processors that implement a Fixed Mapping MMU,
this field specifies the ku g cacheability and coherency
attribute. For processors that do not implement a Fixed
Mapping MMU, this field reads as zero and is ignored o
write.
See “Alternative MMU Organizations” on page 286 for a
description of the Fixed Mapping MMU organization.

R/W Undefined fo
processors with a
Fixed Mapping
MMU; 0 other-

wise

Optional

Impl 24:16 This field is reser ed for implementations. Refer to the
processor specification for the format and definition
this fiel

Undefine Optional

BE 15 Indicates the endian mode in which the processor is run-
ning:

R Preset by hard-
dware or Exter-

nally Set

Required

Encoding Meaning

0 Little endian
1 Big endian

227MIPS® Architecture For Programmers Volume III: The MIPS64® and microMIPS64™ Privileged Resource Architecture, Re-
vision 5.04

AT 14:13 Architecture Type implemented by the processor.

For Release 3, encoding values of 0-2, denotes address
and register width (32-bit or 64-bit).

The implemented instruction sets (MIPS32/64 and/or
microMIPS32/64) are denoted by the ISA register fiel of
Config3.

R Preset by
hardware

Required

AR 12:10 MIPS64 Architecture revision level.

microMIPS64 Architecture revision level is denoted by
the MMAR field o Config3. If Config3 register is not
implemented then microMIPS is not implemented.

If the ISA field o Config3 is one, then MIPS64 is not
implemented and this field is not used

R Preset by
hardware

Required

Table 9.53 Config Register Field Descriptions (Continued)

Fields

Description
Read /
Write Reset State ComplianceName Bits

Encoding Meaning

0 MIPS32 or microMIPS32
1 MIPS64 or microMIPS64 with access

only to 32-bit compatibility segments
2 MIPS64or microMIPS64 with access

to all address segments
3 Reserved

Encoding Meaning

0 Release 1
1 Release 2 or Release 3/MIPSr3 or

Release 5
All features introduced in Release 3
and Release 5 are optional and detect-
able through Config3 or other register
fields

2-7 Reserved

9.42 Configuration Register (CP0 Register 16, Select 0)

MIPS® Architecture For Programmers Volume III: The MIPS64® and microMIPS64™ Privileged Resource Architecture, Revi-
sion 5.04 228

MT 9:7 MMU Type: R Preset by
hardware

Required

0 6:4 Must be written as zero; returns zero on read. 0 0 Reserved

VI 3 Virtual instruction cache (using both virtual indexing and
virtual tags):

R Preset by
hardware

Required

K0 2:0 Kseg0 cacheability and coherency attribute. See Table 9.2
on page 140 for the encoding of this field

R/W Undefine Required

Table 9.53 Config Register Field Descriptions (Continued)

Fields

Description
Read /
Write Reset State ComplianceName Bits

Encoding Meaning

0 None

1 Standard TLB (See “TLB
Organization” on page 38)

2 BAT (See “Block Address Translation”
on page 290)

3 Fixed Mapping (See “Fixed Mapping
MMU” on page 286)

4
Dual VTLB and FTLB (See “Dual
Variable-Page-Size and Fixed-Page-
Size TLBs” on page 292)

Encoding Meaning

0 Instruction Cache is not virtual
1 Instruction Cache is virtual

229MIPS® Architecture For Programmers Volume III: The MIPS64® and microMIPS64™ Privileged Resource Architecture, Re-
vision 5.04

9.43 Configuration Register 1 (CP0 Register 16, Select 1)

Compliance Level: Required.

The Config1 register is an adjunct to the Config register and encodes additional capabilities information. All fields i
the Config1 register are read-only.

The I-Cache and D-Cache configuration parameters include encodings for the number of sets per ay, the line size,
and the associativity. The total cache size for a cache is therefore:

Cache Size = Associativity * Line Size * Sets Per Way

If the line size is zero, there is no cache implemented.

Figure 9.45 shows the format of the Config1 register; Table 9.54 describes the Config1 register fields

Figure 9.45 Config1 Register Format

31 30 25 24 22 21 19 18 16 15 13 12 10 9 7 6 5 4 3 2 1 0

M MMU Size - 1 IS IL IA DS DL DA C2 MD PC WR CA EP FP

Table 9.54 Config1 Register Field Descriptions

Fields

Description
Read/
Write Reset State ComplianceName Bits

M 31 This bit is reserved to indicate that a Config2 register
is present. If the Config2 register is not implemented,
this bit should read as a 0. If the Config2 register is
implemented, this bit should read as a 1.

R Preset by
hardware

Required

MMU
Size - 1

30..25 Number of entries in the TLB minus one. The values 0
through 63 in this field correspond to 1 to 64 TL
entries. The value zero is implied by ConfigMT having
a value of ‘none’.

R Preset by
hardware

Required

IS 24:22 I=cache sets per way: R Preset by
hardware

Required

Encoding Meaning

0 64

1 128

2 256

3 512

4 1024

5 2048

6 4096

7 32

9.43 Configuration Register 1 (CP0 Register 16, Select 1)

MIPS® Architecture For Programmers Volume III: The MIPS64® and microMIPS64™ Privileged Resource Architecture, Revi-
sion 5.04 230

IL 21:19 I-cache line size: R Preset by
hardware

Required

IA 18:16 I-cache associativity: R Preset by
hardware

Required

DS 15:13 D-cache sets per way: R Preset by
hardware

Required

Table 9.54 Config1 Register Field Descriptions (Continued)

Fields

Description
Read/
Write Reset State ComplianceName Bits

Encoding Meaning

0 No I-Cache present

1 4 bytes

2 8 bytes

3 16 bytes

4 32 bytes

5 64 bytes

6 128 bytes

7 Reserved

Encoding Meaning

0 Direct mapped

1 2-way

2 3-way

3 4-way

4 5-way

5 6-way

6 7-way

7 8-way

Encoding Meaning

0 64

1 128

2 256

3 512

4 1024

5 2048

6 4096

7 32

231MIPS® Architecture For Programmers Volume III: The MIPS64® and microMIPS64™ Privileged Resource Architecture, Re-
vision 5.04

DL 12:10 D-cache line size: R Preset by
hardware

Required

DA 9:7 D-cache associativity: R Preset by
hardware

Required

C2 6 Coprocessor 2 implemented:

This bit indicates not only that the processor contains
support for Coprocessor 2, but that such a coprocessor
is attached.

R Preset by
hardware

Required

MD 5 MDMX ASE implemented:

This bit indicates not only that the processor contains
support for MDMX, but that such a processing ele-
ment is attached.
MDMX is deprecated in Release 5 and cannot be
implemented when the MSA Module is implemented.

R Preset by
hardware

Required

Table 9.54 Config1 Register Field Descriptions (Continued)

Fields

Description
Read/
Write Reset State ComplianceName Bits

Encoding Meaning

0 No D-Cache present

1 4 bytes

2 8 bytes

3 16 bytes

4 32 bytes

5 64 bytes

6 128 bytes

7 Reserved

Encoding Meaning

0 Direct mapped

1 2-way

2 3-way

3 4-way

4 5-way

5 6-way

6 7-way

7 8-way

Encoding Meaning

0 No coprocessor 2 implemented

1 Coprocessor 2 implements

Encoding Meaning

0 No MDMX ASE implemented

1 MDMX ASE implemented

9.43 Configuration Register 1 (CP0 Register 16, Select 1)

MIPS® Architecture For Programmers Volume III: The MIPS64® and microMIPS64™ Privileged Resource Architecture, Revi-
sion 5.04 232

PC 4 Performance Counter registers implemented: R Preset by
hardware

Required

WR 3 Watch registers implemented: R Preset by
hardware

Required

CA 2 Code compression (MIPS16e) implemented: R Preset by
hardware

Required

EP 1 EJTAG implemented: R Preset by
hardware

Required

FP 0 FPU implemented:

This bit indicates not only that the processor contains
support for a floating point unit, ut that such a unit is
attached.
If an FPU is implemented, the capabilities of the FPU
can be read from the capability bits in the FIR CP1
register.

R Preset by
hardware

Required

Table 9.54 Config1 Register Field Descriptions (Continued)

Fields

Description
Read/
Write Reset State ComplianceName Bits

Encoding Meaning

0 No performance counter registers
implemented

1 Performance counter registers implemented

Encoding Meaning

0 No watch registers implemented

1 Watch registers implemented

Encoding Meaning

0 MIPS16e not implemented

1 MIPS16e implemented

Encoding Meaning

0 No EJTAG implemented

1 EJTAG implemented

Encoding Meaning

0 No FPU implemented

1 FPU implemented

233MIPS® Architecture For Programmers Volume III: The MIPS64® and microMIPS64™ Privileged Resource Architecture, Re-
vision 5.04

9.44 Configuration Register 2 (CP0 Register 16, Select 2)

Compliance Level: Required if a level 2 or level 3 cache is implemented, or if the Config3 register is required;
Optional otherwise.

The Config2 register encodes level 2 and level 3 cache configurations

Figure 9.46 shows the format of the Config2 register; Table 9.55 describes the Config2 register fields

Figure 9.46 Config2 Register Format
31 30 28 27 24 23 20 19 16 15 12 11 8 7 4 3 0

M TU TS TL TA SU SS SL SA

Table 9.55 Config2 Register Field Descriptions

Fields

Description
Read /
Write

Reset
State ComplianceName Bits

M 31 This bit is reserved to indicate that a Config3 register is
present. If the Config3 register is not implemented, this
bit should read as a 0. If the Config3 register is imple-
mented, this bit should read as a 1.

R Preset by
hardware

Required

TU 30:28 Implementation-specific tertiary cache control or statu
bits. If this field is not implemented it should read as zer
and be ignored on write.

R/W Preset by
hardware

Optional

TS 27:24 Tertiary cache sets per way: R Preset by
hardware

Required

Encoding Sets Per Way

0 64
1 128
2 256
3 512
4 1024
5 2048
6 4096
7 8192

8-15 Reserved

9.44 Configuration Register 2 (CP0 Register 16, Select 2)

MIPS® Architecture For Programmers Volume III: The MIPS64® and microMIPS64™ Privileged Resource Architecture, Revi-
sion 5.04 234

TL 23:20 Tertiary cache line size: R Preset by
hardware

Required

TA 19:16 Tertiary cache associativity: R Preset by
hardware

Required

SU 15:12 Implementation-specifi secondary cache control or status
bits. If this field is not implemented it should read as zer
and be ignored on write.

R/W Preset by
hardware

Optional

SS 11:8 Secondary cache sets per way: R Preset by
hardware

Required

Table 9.55 Config2 Register Field Descriptions (Continued)

Fields

Description
Read /
Write

Reset
State ComplianceName Bits

Encoding Line Size

0 No cache present
1 4
2 8
3 16
4 32
5 64
6 128
7 256

8-15 Reserved

Encoding Associativity

0 Direct Mapped
1 2
2 3
3 4
4 5
5 6
6 7
7 8

8-15 Reserved

Encoding Sets Per Way

0 64
1 128
2 256
3 512
4 1024
5 2048
6 4096
7 8192

8-15 Reserved

235MIPS® Architecture For Programmers Volume III: The MIPS64® and microMIPS64™ Privileged Resource Architecture, Re-
vision 5.04

SL 7:4 Secondary cache line size: R Preset by
hardware

Required

SA 3:0 Secondary cache associativity: R Preset by
hardware

Required

Table 9.55 Config2 Register Field Descriptions (Continued)

Fields

Description
Read /
Write

Reset
State ComplianceName Bits

Encoding Line Size

0 No cache present
1 4
2 8
3 16
4 32
5 64
6 128
7 256

8-15 Reserved

Encoding Associativity

0 Direct Mapped
1 2
2 3
3 4
4 5
5 6
6 7
7 8

8-15 Reserved

9.45 Configuration Register 3 (CP0 Register 16, Select 3)

MIPS® Architecture For Programmers Volume III: The MIPS64® and microMIPS64™ Privileged Resource Architecture, Revi-
sion 5.04 236

9.45 Configuration Register 3 (CP0 Register 16, Select 3)

Compliance Level: Required if any optional feature described by this register is implemented: Release 2 of the
Architecture, the SmartMIPS™ ASE, or trace logic; Optional otherwise.

The Config3 register encodes additional capabilities. All fields in th Config3 register are read-only.

Figure 9-47 shows the format of the Config3 register; Table 9.56 describes the Config3 register fields

Figure 9-47 Config3 Register Format
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

M

B
P
G

CM
G
C
R

M
S
A
P

B
P

B
I

S
C

PW V
Z IPLW MMAR

M
u
C
o
n

ISA
On
Exc

ISA
U
L
R
I

R
X
I

D
S
P
2
P

D
S
P
P

C
T
X
T
C

I
T
L

L
P
A

V
E
I
C

V
I
n
t

SP
CD
M
M

MT SM TL

Table 9.56 Config3 Register Field Descriptions

Fields

Description Read/Write
Reset
State ComplianceName Bits

M 31 This bit is reserved to indicate that a Config4 register is
present. If the Config4 register is not implemented, this
bit should read as a 0. If the Config4 register is imple-
mented, this bit should read as a 1.

R Preset by
hardware

Required

BPG 30 Big Pages feature is implemented. This bit indicates that
TLB pages larger than 256 MB are supported, and that
C0_PageMask Register is 64-bits wide.

R Preset by
hardware

Required

Encoding Meaning

0 Big Pages are not implemented and
PageMask register is 32bits wide.

1 Big Pages are implemented and Page-
Mask register is 64bits wide.

237MIPS® Architecture For Programmers Volume III: The MIPS64® and microMIPS64™ Privileged Resource Architecture, Re-
vision 5.04

CMGCR 29 Coherency Manager memory-mapped Global Configu
ration Register Space is implemented.

R Preset by
hardware

Required for
Coherent
Multiple

-Core
implementa-
tions that use

the Coher-
ency Man-

ager.

MSAP 28 MIPS SIMD Architecture (MSA) is implemented. R Preset by
hardware

Required

BP 27 BadInstrP register implemented. This bit indicates
whether the faulting prior branch instruction word regis-
ter is present.

R Preset by
hardware

Required

BI 26 BadInstr register implemented. This bit indicates
whether the faulting instruction word register is present.

R Preset by
hardware

Required

SC 25 Segment Control implemented. This bit indicates
whether the Segment Control registers SegCtl0,
SegCtl1 and SegCtl2 are present.

R Preset by
hardware

Required

Table 9.56 Config3 Register Field Descriptions (Continued)

Fields

Description Read/Write
Reset
State ComplianceName Bits

Encoding Meaning

0 CM GCR space is not implemented

1 CM GCR space is implemented

Encoding Meaning

0 MSA Module not implemented

1 MSA Module is implemented

Encoding Meaning

0 BadInstrP register not implemented

1 BadInstrP register implemented

Encoding Meaning

0 BadInstr register not implemented

1 BadInstr register implemented

Encoding Meaning

0 Segment Control not implemented

1 Segment Control is implemented

9.45 Configuration Register 3 (CP0 Register 16, Select 3)

MIPS® Architecture For Programmers Volume III: The MIPS64® and microMIPS64™ Privileged Resource Architecture, Revi-
sion 5.04 238

PW 24 HardWare Page Table Walk implemented. This bit indi-
cates whether the Page Table Walking registers
PWBase, PWField and PWSize are present.

R Preset by
hardware

Required

VZ 23 Virtualization Module implemented. This bit indicates
whether the Virtualization Module is implemented.

R Preset by
hardware

Required

IPLW 22:21 Width of StatusIPL and CauseRIPL fields

If the IPL field is 8-bits in width, bits 18 and 16 o
Status are used as the most-significant bit and secon
most-significant bit, respect vely, of that field

If the RIPL field is 8-bits in width, bits 17 and 16 o
Cause are used as the most-significant bit and secon
most-significant bit, respect vely, of that field

R Preset by
hardware

Required if
MCU ASE is
implemented

MMAR 20:18 microMIPS64 Architecture revision level.

MIPS64 Architecture revision level is denoted by the
AR field o Config.

If the ISA field o Config3 is zero, microMIPS64 is not
implemented and this field is not used

R Preset by
hardware

Required if
microMIPS is
implemented

Table 9.56 Config3 Register Field Descriptions (Continued)

Fields

Description Read/Write
Reset
State ComplianceName Bits

Encoding Meaning

0 Page Table Walking not implemented

1 Page Table Walking is implemented

Encoding Meaning

0 Virtualization Module not imple-
mented

1 Virtualization Module is implemented

Encoding Meaning

0 IPL and RIPL fields are 6-bits i
width.

1 IPL and RIPL fields are 8-bits i
width.

Others Reserved.

Encoding Meaning

0 Release3/MIPSr3

1-7 Reserved

239MIPS® Architecture For Programmers Volume III: The MIPS64® and microMIPS64™ Privileged Resource Architecture, Re-
vision 5.04

MCU 17 MIPS® MCU ASE is implemented. R Preset by
hardware

Required if
MCU ASE is
implemented

ISAOnExc 16 Reflects the Instruction Set Architecture used after ec-
toring to an exception. Affects all exceptions whose off-
sets are relative to EBase.

RW if both instruc-
tion sets are imple-
mented; Preset if

only microMIPS is
implemented.

Undefine Required if
microMIPS is
implemented

ISA 15:14 Indicates Instruction Set Availability. R Preset by
hardware

Required if
microMIPS is
implemented

ULRI 13 UserLocal register implemented. This bit indicates
whether the UserLocal Coprocessor 0 register is imple-
mented.

R Preset by
hardware

Required

Table 9.56 Config3 Register Field Descriptions (Continued)

Fields

Description Read/Write
Reset
State ComplianceName Bits

Encoding Meaning

0 MCU ASE is not implemented.

1 MCU ASE is implemented

Encoding Meaning

0 MIPS64 is used on entrance to an
exception vector.

1 microMIPS is used on entrance to an
exception vector.

Encoding Meaning

0 Only MIPS64 Instruction Set is
implemented.

1 Only microMIPS64 is implemented.

2 Both MIPS64 and microMIPS64 ISAs
are implemented. MIPS64 ISA used
when coming out of reset.

3 Both MIPS64 and microMIPS64 ISAs
are implemented. microMIPS64 ISA
used when coming out of reset.

Encoding Meaning

0 UserLocal register is not imple-
mented

1 UserLocal register is implemented

9.45 Configuration Register 3 (CP0 Register 16, Select 3)

MIPS® Architecture For Programmers Volume III: The MIPS64® and microMIPS64™ Privileged Resource Architecture, Revi-
sion 5.04 240

RXI 12 Indicates whether the RIE and XIE bits exist within the
PageGrain register.

R Preset by
hardware

Required

DSP2P 11 MIPS® DSP Module Revision 2 implemented. This bit
indicates whether Revision 2 of the MIPS DSP Module
is implemented.

R Preset by
hardware

Required

DSPP 10 MIPS® DSP Module implemented. This bit indicates
whether the MIPS DSP Module is implemented.

R Preset by
hardware

Required

CTXTC 9 ContextConfig and XContextConfig registers are
implemented and the width of the BadVPN2 fiel within
the Config register and the XConfig register depends on
the contents of the ContextConfig register and
XContextConfig register respectively.
.

R Preset by
hardware

Required

Table 9.56 Config3 Register Field Descriptions (Continued)

Fields

Description Read/Write
Reset
State ComplianceName Bits

Encoding Meaning

0 The RIE and XIE bits are not imple-
mented within the PageGrain regis-
ter.

1 The RIE and XIE bits are imple-
mented within the PageGrain regis-
ter.

Encoding Meaning

0 Revision 2 of the MIPS DSP Module
is not implemented

1 Revision 2 of the MIPS DSP Module
is implemented

Encoding Meaning

0 MIPS DSP Module is not implemented

1 MIPS DSP Module is implemented

Encoding Meaning

0 ContextConfig and XContextConfig
are not implemented.

1 ContextConfig and XContextConfig
are implemented and is used for the
ConfigBadVPN2 and
XConfigBadVPN2 fields

241MIPS® Architecture For Programmers Volume III: The MIPS64® and microMIPS64™ Privileged Resource Architecture, Re-
vision 5.04

ITL 8 MIPS® IFlowtrace™ mechanism implemented. This bit
indicates whether the MIPS IFlowTrace is implemented.

R Preset by
hardware

Required
(Release 2.1

Only)

LPA 7 Large Physical Address support is implemented, and the
PageGrain register exists.

The following Coprocessor 0 fields and associated con
trol are present if this bit is a 1:
• Modifications t EntryLo0 and EntryLo1 to support

physical addresses larger than 36 bits.
•
• PageGrain
• Config5MVH
For implementations of Release 1 of the Architecture,
this bit returns zero on read.

R Preset by
hardware

Required
(Release 2)

VEIC 6 Support for an external interrupt controller is imple-
mented.

For implementations of Release 1 of the Architecture,
this bit returns zero on read.
This bit indicates not only that the processor contains
support for an external interrupt controller, but that such
a controller is attached.

R Preset by
hardware

Required
(Release 2

Only)

Table 9.56 Config3 Register Field Descriptions (Continued)

Fields

Description Read/Write
Reset
State ComplianceName Bits

Encoding Meaning

0 MIPS IFlowTrace is not implemented

1 MIPS IFlowTrace is implemented

Encoding Meaning

0 Large physical address support is not
implemented

1 Large physical address support is
implemented

Encoding Meaning

0 Support for EIC interrupt mode is not
implemented

1 Support for EIC interrupt mode is
implemented

9.45 Configuration Register 3 (CP0 Register 16, Select 3)

MIPS® Architecture For Programmers Volume III: The MIPS64® and microMIPS64™ Privileged Resource Architecture, Revi-
sion 5.04 242

VInt 5 Vectored interrupts implemented. This bit indicates
whether vectored interrupts are implemented.

For implementations of Release 1 of the Architecture,
this bit returns zero on read.

R Preset by
hardware

Required
(Release 2

Only)

SP 4 Small (1KByte) page support is implemented, and the
PageGrain register exists

For implementations of Release 1 of the Architecture,
this bit returns zero on read.

R Preset by
hardware

Required
(Release 2

Only)

CDMM 3 Common Device Memory Map implemented. This bit
indicates whether the CDMM is implemented.

R Preset by
hardware

Required

MT 2 MIPS® MT Module implemented. This bit indicates
whether the MIPS MT Module is implemented.

R Preset by
hardware

Required

SM 1 SmartMIPS™ ASE implemented. This bit indicates
whether the SmartMIPS ASE is implemented.

R Preset by
hardware

Required

Table 9.56 Config3 Register Field Descriptions (Continued)

Fields

Description Read/Write
Reset
State ComplianceName Bits

Encoding Meaning

0 Vector interrupts are not implemented

1 Vectored interrupts are implemented

Encoding Meaning

0 Small page support is not imple-
mented

1 Small page support is implemented

Encoding Meaning

0 CDMM is not implemented

1 CDMM is implemented

Encoding Meaning

0 MIPS MT Module is not implemented

1 MIPS MT Module is implemented

Encoding Meaning

0 SmartMIPS ASE is not implemented

1 SmartMIPS ASE is implemented

243MIPS® Architecture For Programmers Volume III: The MIPS64® and microMIPS64™ Privileged Resource Architecture, Re-
vision 5.04

TL 0 Trace Logic implemented. This bit indicates whether PC
or data trace is implemented.

R Preset by
hardware

Required

Table 9.56 Config3 Register Field Descriptions (Continued)

Fields

Description Read/Write
Reset
State ComplianceName Bits

Encoding Meaning

0 Trace logic is not implemented

1 Trace logic is implemented

9.45 Configuration Register 3 (CP0 Register 16, Select 3)

MIPS® Architecture For Programmers Volume III: The MIPS64® and microMIPS64™ Privileged Resource Architecture, Revi-
sion 5.04 244

245MIPS® Architecture For Programmers Volume III: The MIPS64® and microMIPS64™ Privileged Resource Architecture, Re-
vision 5.04

9.46 Configuration Register 4 (CP0 Register 16, Select 4)

Compliance Level: Required if any optional feature described by this register is implemented: Release 2 of the
Architecture; Optional otherwise.

The Config4 register encodes additional capabilities.

The number of page-pair entries within the FTLB = decode(FTLBSets) * decode(FTLBWays).

The number of page-pair entries accessible in the VTLB is defined by concatenatin Config4VTLBSizeExt and
Config1MMUSize. Modifying VTLB size can be used to allow software to reserve high index slots in the VTLB.

Figure 9.48 shows the format of the Config4 register; Table 9.57 describes the Config4 register fields

Figure 9.48 Config4 Register Format
31 30 29 28 24 23 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

M IE
AE VTLBSizeExt KScrExist MMU

ExtDef Definition Depends on MMUExtDe

If MMUExtDef=3 0 FTLB
PageSize FTLBWays FTLBSets

If MMUExtDef=2 000 FTLB
PageSize FTLBWays FTLBSets

If MMUExtDef=1 000000 MMUSizeExt

If MMUExtDef=0 00000000000000

Table 9.57 Config4 Register Field Descriptions

Fields

Description
Read /
Write

Reset
State ComplianceName Bits

M 31 This bit is reserved to indicate that a Config5 register is
present. If the Config5 register is not implemented, this
bit should read as a 0. If the Config5 register is imple-
mented, this bit should read as a 1.

R Preset by
hardware

Required

9.46 Configuration Register 4 (CP0 Register 16, Select 4)

MIPS® Architecture For Programmers Volume III: The MIPS64® and microMIPS64™ Privileged Resource Architecture, Revi-
sion 5.04 246

IE 30:29 TLB invalidate instruction support/configuration R Preset by
hardware

Required for
TLBINV,
TLBINVF,
EntryHiEHINV

These features
must be imple-
mented if Seg-
mentation
Control is
implemented.

These features
are recom-
mended for
FTLB/VTLB
MMUs.

AE 28 If this bit is set, then EntryHIASID is extended to 10 bits. R Preset by
hardware

Required

VTLB-
SizeExt

27:24 If Config4MMUExt=3 then this fiel is concatenated to the
left of the most-significant bit of th Config1MMUSize
field to indicate the size of the VTLB

R Preset by
hardware

Required if
MMUExt-

Def=3

KScr
Exist

23:16 Indicates how many scratch registers are available to ker-
nel-mode software within COP0 Register 31.

Each bit represents a select for Coproecessor0 Register 31.
Bit 16 represents Select 0, Bit 23 represents Select 7.
If the bit is set, the associated scratch register is imple-
mented and available for kernel-mode software.

Scratch registers meant for other purposes are not repre-
sented in this field. or example, if EJTAG is imple-
mented, Bit 16 is preset to zero even though DESAVE
register is implemented at Select 0. Select 1 is reserved for
future debug purposes and should not be used as a kernel
scratch register, so bit 17 is preset to zero.

R Preset by
hardware

Required if
Kernel Scratch
Registers are

available

Table 9.57 Config4 Register Field Descriptions (Continued)

Fields

Description
Read /
Write

Reset
State ComplianceName Bits

Encoding Meaning

00 TLBINV, TLBINVF, EntryHiEHINV
not supported by hardware

01 Reserved.
10 TLBINV, TLBINVF supported.

EntryHiEHINV supported. Refer to
Volume II for the full description of
these instructions.
TLBINV* instructions operate on one
TLB entry.

11 TLBINV, TLBINVF supported.
EntryHiEHINV supported. Refer to
Volume II for the full description of
these instructions.
TLBINV* instructions operate on
entire MMU.

247MIPS® Architecture For Programmers Volume III: The MIPS64® and microMIPS64™ Privileged Resource Architecture, Re-
vision 5.04

MMU
Ext
Def

15:14 MMU Extension Definition
Defines h w Config4[13:0] is to be interpreted.

R Preset by
hardware

Required

FTLB
Page Size

10:8 Indicates the Page Size of the FTLB Array Entries.

Implementations are allowed to implement any subset of
these sizes, even a subset of only one pagesize. Software
can detect if a FTLB page size is implemented by writing
the desired size into this register field. If the size is imple
mented, the register field is updated to the desired encod
ing. If the size is not implemented, the register field alue
is not changed.

The FTLB must be flushe of any valid entries before this
register field alue is changed by software. The FTLB
behavior is UNDEFINED if there are valid FTLB entries
which were not all programmed using a common page
size.

RW if
multiple
FTLB

pagesizes
are implle-

mented

R if only
one FTLB
page size
is imple-
mented.

Preset by
hardware,

chosen value
is implemen-

tation spe-
cifi

Required if
MMUExt-

Def=2

Table 9.57 Config4 Register Field Descriptions (Continued)

Fields

Description
Read /
Write

Reset
State ComplianceName Bits

Encoding Meaning

0 Reserved.
Config4[12:0] - Must be written a
zeros, returns zeros on read.

1 Config4[7:0] used as MMUSizeExt
2 Config4[3:0] used as FTLBSets

Config4[7:4] used as FTLB ays.
Config4[10:8] used as FTLB ageSize.

3 FTLB and VTLB supported.
Config4[3:0] used as FTLBSets
Config4[7:4] used as FTLB ays.
Config4[12:8] used as FTLB ageSize.
Config4[27:24 used as VTLBSizeExt.

Encoding Page Size

0 1 KB
1 4 KB
2 16 KB
3 64KB
4 256 KB
5 1 GB
6 4 GB
7 Reserved

9.46 Configuration Register 4 (CP0 Register 16, Select 4)

MIPS® Architecture For Programmers Volume III: The MIPS64® and microMIPS64™ Privileged Resource Architecture, Revi-
sion 5.04 248

FTLB
Page Size

12:8 Indicates the Page Size of the FTLB Array Entries.

Implementations are allowed to implement any subset of
these sizes, even a subset of only one page size. Software
can detect if an FTLB page size is implemented by writing
the desired size into this register field. If the size is imple
mented, the register field is updated to the desired encod
ing. If the size is not implemented, the register field alue
is not changed.

The FTLB must be flushe of any valid entries before this
register field alue is changed by software. The FTLB
behavior is UNDEFINED if there are valid FTLB entries
which were not all programmed using a common page
size.

R/W if
multiple
FTLB

pagesizes
are imple-

mented

R if only
one FTLB
page size
is imple-
mented.

Preset by
hardware,

chosen value
is implemen-

tation spe-
cifi

Required if
MMUExt-

Def=3

Table 9.57 Config4 Register Field Descriptions (Continued)

Fields

Description
Read /
Write

Reset
State ComplianceName Bits

Encoding Page Size

0 1 KB
1 4 KB
2 16 KB
3 64KB
4 256 KB
5 1 MB
6 4 MB
7 16 MB
8 64 MB
9 256 MB
10 1 GB
11 4 GB
12 16 GB
13 64 GB
14 256 GB
15 1 TB
16 4 TB
17 16 TB
18 64 TB
19 256 TB

249MIPS® Architecture For Programmers Volume III: The MIPS64® and microMIPS64™ Privileged Resource Architecture, Re-
vision 5.04

FTLB
Ways

7:4 Indicates the Set Associativity of the FTLB Array. R Preset by
hardware

Required if
MMUExt-

Def=2

FTLB
Sets

3:0 Indicates the number of Sets per Way within the FTLB
Array.

R Preset by
hardware

Required if
MMUExt-

Def=2

MMU
Size
Ext

7:0 If Config4MMUExt=1 then this field is an xtension of
Config1MMUSize-1 field

This field is concatenated to the left of the most-signif
cant bit to the MMUSize-1 fiel to indicate the size of the
TLB-1.

R Preset by
hardware

Required if
MMUExt-

Def=1

Table 9.57 Config4 Register Field Descriptions (Continued)

Fields

Description
Read /
Write

Reset
State ComplianceName Bits

Encoding Associativity

0 2
1 3
2 4
3 5
4 6
5 7
6 8

7-15 Reserved

Encoding Sets per Way

0 1
1 2
2 4
3 8
4 16
5 32
6 64
7 128
8 256
9 512
10 1024
11 2048
12 4096
13 8192
14 16384
15 32768

9.46 Configuration Register 4 (CP0 Register 16, Select 4)

MIPS® Architecture For Programmers Volume III: The MIPS64® and microMIPS64™ Privileged Resource Architecture, Revi-
sion 5.04 250

251MIPS® Architecture For Programmers Volume III: The MIPS64® and microMIPS64™ Privileged Resource Architecture, Re-
vision 5.04

9.47 Configuration Register 5 (CP0 Register 16, Select 5)

Compliance Level: Required if any optional feature described by this register is implemented: Release 3 of the
Architecture; Optional otherwise.

The Config5 register encodes additional capabilities:

• Cache Error exception vector control.

• Segmentation Control legacy compatability.

• Existence of EVA instructions (LBK, LBUK, LHK, LHUK, LWK, SBK, SHK, SWK).

• Existence of the User Mode FP Register mode-changing facility (UFR).

• Existence of the Nested Fault feature (NestedExc, NestedEPC).

• Existence of COP0 MAAR and MAARI (MRP).

• Support for additional LL/SC instruction handling capabilities (LLB).

• Existence of MTHC0 and MFHC0 instructions.

Figure 9.49 shows the format of the Config5 register; Table 9.61 describes the Config5 register fields

Figure 9.49 Config5 Register Format
31 30 29 28 27 26 6 5 4 3 2 1 0

M K CV EVA MSAEn 0 MVH LLB MRP UFR 0 NFExists

Table 9.58 Config5 Register Field Descriptions

Fields

Description
Read /
Write

Reset
State ComplianceName Bits

M 31 This bit is reserved to indicate that as yet undefined con
figuration r gisters are present. With the current architec-
tural definition, this bit should a ways read as a 0.

R Preset by
hardware

Required

9.47 Configuration Register 5 (CP0 Register 16, Select 5)

MIPS® Architecture For Programmers Volume III: The MIPS64® and microMIPS64™ Privileged Resource Architecture, Revi-
sion 5.04 252

K 30 Enable/disable ConfigK0, ConfigKu , ConfigK23 Cache
Coherency Attribute control if Segmentation Control is
implemented.1

R/W 0 Required for
Segmentation

Control.
(Referto4.1.5

on page 27)

CV 29 Cache Error Exception Vector control. Disables logic
forcing use of kseg1 region in the event of a Cache Error
exception when StatusBEV=0.

R/W 0 Required for
Segmentation

Control.
(Referto4.1.5

on page 27)

EVA 28 Enhanced Virtual Addressing instructions implemented R Preset by
hardware

Optional

MSAEn 27 MIPS SIMD Architecture (MSA) Enable. R/W 0 Required if
MSA Module

is imple-
mented.

0 26:5 Returns zeros on read. R0 0 Reserved

Table 9.58 Config5 Register Field Descriptions (Continued)

Fields

Description
Read /
Write

Reset
State ComplianceName Bits

Encoding Meaning

0 ConfigK0, ConfigKu , ConfigK23
enabled.

1 Configk0, ConfigKu , ConfigK23 dis-
abled.

Encoding Meaning

0 On Cache Error exception, vector
address bits 63..29 forced to place
vector in kseg1.

1 On Cache Error exception, vector
address uses full EBase value for bits
63..29.

Encoding Meaning

0 MSA instructions and registers are
disabled. Executing a MSA instruc-
tion causes a MSA Disabled excep-
tion.

1 MSA instructions and registers are
enabled.

253MIPS® Architecture For Programmers Volume III: The MIPS64® and microMIPS64™ Privileged Resource Architecture, Re-
vision 5.04

MVH 5 Move To/From High COP0 (MTHC0/MFHC0) instruc-
tions are implemented.
Currently these instructions are only required for
Extended Physical Addressing (XPA).
.

R Preset by
hardware

Required for
XPA

(Release 5)

LLB 4 Load-Linked Bit software support is present.

Features enabled by Config5LLB =1 are recommended if
Virtualization is supported, i.e., Config3VZ=1.
.

R Preset by
hardware

Required if
LLB support
implemented
(Release 5)

MRP 3 COP0 Memory Accessibility Attribute Registers, MAAR
and MAARI, are present.
.

R Preset by
hardware

Required if
MAAR(I)

implemented
(Release 5)

Table 9.58 Config5 Register Field Descriptions (Continued)

Fields

Description
Read /
Write

Reset
State ComplianceName Bits

Encoding Meaning

0 MTHC0 and MFHC0 are not sup-
ported. COP0 extensions do not exist.

1 MTHC0 and MFHC0 are supported.
Extensions to 32-bit COP0 registers
exist.

Encoding Meaning

0 No new support added. Hardware is
pre-Release 5 LL/SC compatible.

1 Additional support exists:
• ERETNC instruction added.
• COP0 LLAddrLLB is mandatory.
• LLbit is software accessible through

LLAddr[0].
• SC instruction behaviour is modi-

fied

Encoding Meaning

0 MAAR and MAARI not present.

1 MAAR and MAARI present.
Software may program these registers
to apply additional attributes to fetch/
load/store access to memory/IO
address ranges

9.47 Configuration Register 5 (CP0 Register 16, Select 5)

MIPS® Architecture For Programmers Volume III: The MIPS64® and microMIPS64™ Privileged Resource Architecture, Revi-
sion 5.04 254

Table 9.59 SegCtl0K Segment CCA Determination

UFR 2 This feature allows user-mode access to StatusFR using
CTC1 and CFC1 instructions.
.

R/W if
FIRUFRP =1

else 02

0
Optional in
(Release 5)

NF
Exists

0 Indicates that the Nested Fault feature exists.

The Nested Fault feature allows recognition of faulting
behavior within an exception handler.

R Preset Required if the
Nested Fault
feature exists.

1. Note on Config5K, Segment CCA determination: Table 9.61 below shows which field determines the CCA of a s gment when
Config5K=0 or Config5K=1, on implementations with/without a TLB, when the region is accessed unmapped.

2. Config5UFR is R/W if an FPU is present, and if the User-mode FR changing feature is present, i.e. if FIRUFRP is set. Otherwise
Config5UFR is 0.

Segment Config5K=0 Config5K=0 Config5K=1

No TLB With TLB

0 ConfigK23 Undefine 1

1. Note: Reset state of these regions is mapped on implementations containing a
TLB. Software must set Config5K=1 if it is programming any of these segments to
be used as unmapped on an implementation containing a TLB.

SegCtl0C0

1 ConfigK23 Undefine 1 SegCtl0C1

2 SegCtl1C2 SegCtl1C2 SegCtl1C2

3 ConfigK0 ConfigK0 SegCtl1C3

4 ConfigKU Undefine 1 SegCtl2C4

5 ConfigKU Undefine 1 SegCtl2C5

Table 9.58 Config5 Register Field Descriptions (Continued)

Fields

Description
Read /
Write

Reset
State ComplianceName Bits

Encoding Meaning

0 User-mode FR instructions not
allowed.

1 User-mode FR instructions allowed.

255MIPS® Architecture For Programmers Volume III: The MIPS64® and microMIPS64™ Privileged Resource Architecture, Re-
vision 5.04

9.48 Reserved for Implementations (CP0 Register 16, Selects 6 and 7)

Compliance Level: Implementation Dependent.

CP0 register 16, Selects 6 and 7 are reserved for implementation-dependent use and is not define by the architecture.
In order to use CP0 register 16, Selects 6 and 7, it is not necessary to implement CP0 register 16, Selects 2 through 5
only to set the M bit in each of these registers. That is, if the Config2 and Config3 registers are not needed for the
implementation, they need not be implemented just to provide the M bits.

The architecture only defines the use of the M bits for presence detection of Selects 1 to 5

9.49 Load Linked Address (CP0 Register 17, Select 0)

MIPS® Architecture For Programmers Volume III: The MIPS64® and microMIPS64™ Privileged Resource Architecture, Revi-
sion 5.04 256

9.49 Load Linked Address (CP0 Register 17, Select 0)

Compliance Level: Optional prior to Release 5. Required in Release 5 if Config5LLB=1.

The LLAddr register contains relevant bits of the physical address read by the most recent Load Linked instruction.
This register is implementation-dependent, is for diagnostic purposes only, and serves no function during normal
operation.

Release 5 also provides software with the ability to read and clear the LLbit, which is set when an LL instruction is
executed. The presence of LLB in LLAddr in Release 5 can be detected by software through Config5LLB.

Figure 9-50 shows the format of the LLAddr register and Table 9.60 describes the LLAddr register fields fo
pre-Release 5 implementations.

Figure 9-51 shows the format of the LLAddr register; Table 10 describes the LLAddr register fields
Figure 9-50 LLAddr Register Format (pre Release 5)

63 0

PAddr

Table 9.60 LLAddr Register Field Descriptions (pre Release 5)

Fields

Description
Read /
Write

Reset
State ComplianceName Bits

PAddr 63..0 This fiel encodes the physical address read by the most
recent Load Linked instruction. The format of this regis-
ter is implementation-dependent, and an implementation
may implement as many of the bits or format the address
in any way that it finds co venient.

R Undefine Optional

Figure 9-51 LLAddr Register Format (Release 5)
63 1 0

PAddr LLB

257MIPS® Architecture For Programmers Volume III: The MIPS64® and microMIPS64™ Privileged Resource Architecture, Re-
vision 5.04

Table 10: LLAddr Register Field Descriptions (Release 5)

Fields

Description
Read /
Write

Reset
State ComplianceName Bits

PAddr 63..1 This fiel encodes the physical address read by the most
recent Load Linked instruction. The format of this regis-
ter is implementation-dependent, and an implementation
may implement as many of the bits or format the address
in any way that it finds co venient.

LLAddr[1] is always aligned to PA[5], which implies
that PAddr is always 32-byte aligned.

The number of physical address bits is implementation-
specific. or the unimplemented address bits, writes are
ignored and reads return zero.

R Undefine Optional

LLB 0 LLbit.
LLB is set when the LLD instruction is executed. The SC
instructions and other hardware events may clear LLB.
This field all ws the LLbit to be software accessible.
LLB can be cleared by software but cannot be set.

R/W 0 Required if
Config5LLB=1

(Release 5)

9.50 WatchLo Register (CP0 Register 18)

MIPS® Architecture For Programmers Volume III: The MIPS64® and microMIPS64™ Privileged Resource Architecture, Revi-
sion 5.04 258

9.50 WatchLo Register (CP0 Register 18)

Compliance Level: Optional.

The WatchLo and WatchHi registers together provide the interface to a watchpoint debug facility which initiates a
watch exception if an instruction or data access matches the address specifie in the registers. As such, they duplicate
some functions of the EJTAG debug solution. Watch exceptions are taken only if the EXL and ERL bits are zero in the
Status register. If either bit is a one, the WP bit is set in the Cause register, and the watch exception is deferred until
both the EXL and ERL bits are zero.

An implementation may provide zero or more pairs of WatchLo and WatchHi registers, referencing them via the select
field of the MTC0/MFC0 and DMTC0/DMFC0 instructions, and each pair o Watch registers may be dedicated to a
particular type of reference (e.g., instruction or data). Software may determine if at least one pair of WatchLo and
WatchHi registers are implemented via the WR bit of the Config1 register. See the discussion of the M bit in the
WatchHi register description below.

The WatchLo register specifies the base virtual address and the type of reference (instruction fetch, load, store) t
match. If a particular Watch register only supports a subset of the reference types, the unimplemented enables must be
ignored on write and return zero on read. Software may determine which enables are supported by a particular Watch
register pair by setting all three enables bits and reading them back to see which ones were actually set.

It is implementation-dependent whether a data watch is triggered by a prefetch, CACHE, or SYNCI (Release 2 and
subsequent releases only) instruction whose address matches the Watch register address match conditions.For micro-
MIPS implementations, it is implementation-dependent whether a match occurs if the second half-word overlaps a
watched address and the first half- ord does not overlap with the watched address.

Figure 9.52 shows the format of the WatchLo register; Table 9.1 describes the WatchLo register fields

Figure 9.52 WatchLo Register Format
63 3 2 1 0

VAddr I R W

Table 9.1 WatchLo Register Field Descriptions

Fields

Description
Read /
Write

Reset
State ComplianceName Bits

VAddr 63..3 This field specifies the virtual address to match. Note th
this is a doubleword address, since bits [2:0] are used to
control the type of match.

R/W Undefine Required

I 2 If this bit is one, watch exceptions are enabled for instruc-
tion fetches that match the address and are actually issued
by the processor (speculative instructions never cause
Watch exceptions).
If this bit is not implemented, writes to it must be ignored,
and reads must return zero.

R/W 0 Optional

259MIPS® Architecture For Programmers Volume III: The MIPS64® and microMIPS64™ Privileged Resource Architecture, Re-
vision 5.04

R 1 If this bit is one, watch exceptions are enabled for loads
that match the address.
For the purposes of the MIPS16e PC-relative load instruc-
tions, the PC-relative reference is considered to be a data,
rather than an instruction reference. That is, the watch-
point is triggered only if this bit is a 1.
If this bit is not implemented, writes to it must be ignored,
and reads must return zero.

R/W 0 Optional

W 0 If this bit is one, watch exceptions are enabled for stores
that match the address.
If this bit is not implemented, writes to it must be ignored,
and reads must return zero.

R/W 0 Optional

Table 9.1 WatchLo Register Field Descriptions

Fields

Description
Read /
Write

Reset
State ComplianceName Bits

9.51 WatchHi Register (CP0 Register 19)

MIPS® Architecture For Programmers Volume III: The MIPS64® and microMIPS64™ Privileged Resource Architecture, Revi-
sion 5.04 260

9.51 WatchHi Register (CP0 Register 19)

Compliance Level: Optional.

The WatchLo and WatchHi registers together provide the interface to a watchpoint debug facility which initiates a
watch exception if an instruction or data access matches the address specifie in the registers. As such, they duplicate
some functions of the EJTAG debug solution. Watch exceptions are taken only if the EXL and ERL bits are zero in the
Status register. If either bit is a one, the WP bit is set in the Cause register, and the watch exception is deferred until
both the EXL and ERL bits are zero.

An implementation may provide zero or more pairs of WatchLo and WatchHi registers, referencing them via the select
field of the MTC0/MFC0 and DMTC0/DMFC0 instructions, and each pair o Watch registers may be dedicated to a
particular type of reference (e.g., instruction or data). Software may determine if at least one pair of WatchLo and
WatchHi registers are implemented via the WR bit of the Config1 register. If the M bit is one in the WatchHi register
reference with a select field of n’, another WatchHi/WatchLo pair is implemented with a select field of n+1’.

The WatchHi register contains information that qualifies the virtual address specified in t WatchLo register: an
ASID, a G(lobal) bit, an optional address mask, and three bits (I, R, and W) that denote the condition that caused the
watch register to match. If the G bit is one, any virtual address reference that matches the specifie address will cause
a watch exception. If the G bit is a zero, only those virtual address references for which the ASID value in the
WatchHi register matches the ASID value in the EntryHi register cause a watch exception. The optional mask fiel
provides address masking to qualify the address specified i WatchLo.

The I, R, and W bits are set by the processor when the corresponding watch register condition is satisfie and indicate
which watch register pair (if more than one is implemented) and which condition matched. When set by the proces-
sor, each of these bits remain set until cleared by software. All three bits are “write one to clear”, such that software
must write a one to the bit in order to clear its value. The typical way to do this is to write the value read from the
WatchHi register back to WatchHi. In doing so, only those bits which were set when the register was read are cleared
when the register is written back.

Figure 9.53 shows the format of the WatchHi register; Table 9.2 describes the WatchHi register fields

Figure 9.53 WatchHi Register Format
31 30 29 28 27 26 25 24 23 16 15 12 11 3 2 1 0

M G WM 0 EAS ASID 0 Mask I R W

Table 9.2 WatchHi Register Field Descriptions

Fields

Description
Read /
Write

Reset
State ComplianceName Bits

M 31 If this bit is one, another pair of WatchHi/WatchLo regis-
ters is implemented at an MTC0 or MFC0 select fiel
value of ‘n+1’

R Preset Required

261MIPS® Architecture For Programmers Volume III: The MIPS64® and microMIPS64™ Privileged Resource Architecture, Re-
vision 5.04

G 30 If this bit is one, any address that matches that specifie in
the WatchLo register will cause a watch exception. If this
bit is zero, the ASID field of th WatchHi register must
match the ASID field of th EntryHi register to cause a
watch exception.

R/W Undefine Required

WM 29:28 Reserved for Virtualization Module. 0 0 Reserved

EAS 25:24 If Config4AE = 1 then these bits extend the ASID field o
this register.

If Config4AE = 0 then Must be written as zero; returns
zero on read.

If
Config4A

E = 1 then
R/W
else 0

If
Config4AE=

1 then
Undefine

else 0

Required

ASID 23..16 ASID value which is required to match that in the EntryHi
register if the G bit is zero in the WatchHi register.

R/W Undefine Required

Mask 11..3 Optional bit mask that qualifies the address in th
WatchLo register. If this field is implemented, a y bit in
this field that is a one inhibits the corresponding addres
bit from participating in the address match.
If this field is not implemented, writes to it must b
ignored, and reads must return zero.
Software may determine how many mask bits are imple-
mented by writing ones the this field and then readin
back the result.

R/W Undefine Optional

I 2 This bit is set by hardware when an instruction fetch con-
dition matches the values in this watch register pair. When
set, the bit remains set until cleared by software, which is
accomplished by writing a 1 to the bit.

W1C Undefine Required(Release
2)

R 1 This bit is set by hardware when a load condition matches
the values in this watch register pair. When set, the bit
remains set until cleared by software, which is accom-
plished by writing a 1 to the bit.

W1C Undefine Required(Release
2)

W 0 This bit is set by hardware when a store condition matches
the values in this watch register pair. When set, the bit
remains set until cleared by software, which is accom-
plished by writing a 1 to the bit.

W1C Undefine Required(Release
2)

0 27..26,
15..12

Must be written as zero; returns zero on read. 0 0 Reserved

Table 9.2 WatchHi Register Field Descriptions

Fields

Description
Read /
Write

Reset
State ComplianceName Bits

9.52 XContext Register (CP0 Register 20, Select 0)

MIPS® Architecture For Programmers Volume III: The MIPS64® and microMIPS64™ Privileged Resource Architecture, Revi-
sion 5.04 262

9.52 XContext Register (CP0 Register 20, Select 0)

Compliance Level: Required for 64-bit TLB-based MMUs. Optional otherwise.

The XContext register is a read/write register containing a pointer to an entry in the page table entry (PTE) array.
This array is an operating system data structure that stores virtual-to-physical translations. During a TLB miss, the
operating system loads the TLB with the missing translation from the PTE array. The XContext register is primarily
intended for use with the XTLB Refil handler, but is also loaded by hardware on a TLB Refill However, it is unlikely
to be useful to software in the TLB Refill Handle . The XContext register duplicates some of the information pro-
vided in the BadVAddr register.

If Config3CTXTC =0 then the XContext register is organized in such a way that the operating system can directly ref-
erence a 16-byte structure in memory that describes the mapping. For PTE structures of other sizes, the content of this
register can be used by the TLB refill handler after appropriate shifting and masking

If Config3CTXTC =0 then a TLB exception (TLB Refill, XTLB Refill, TLB valid, or TLB Modified) causes bit
63..62 of the virtual address to be written into the R field and bit SEGBITS-1..13 of the virtual address to be written
into the BadVPN2 field of th XContext register. The PTEBase field is written and used by the operating system

The BadVPN2 and R fields of th XContext register are not defined after an address error xception and these field
may be modified by hard are during the address error exception sequence.

Figure 9.54 shows the format of the XContext register when Config3CTXTC =0; Table 9.3 describes the XContext
register fields whe Config3CTXTC =0. In Figure 9.54, bit numbers above the figure use the symbo SEGBITS; bit
number under the figure assume tha SEGBITS has the value 40.

Figure 9.54 XContext Register Format when Config3CTXTC=0

Table 9.3 XContext Register Fields when Config3CTXTC=0

Field
Description

Read /
Write

Reset
State

Complia
nceName Bits

PTEBase 63 .. SEGBITS-13+6
(63..33 assuming
SEGBITS is 40)

This field is for use by the operating system and i
normally written with a value that allows the operating
system to use the XContext Register as a pointer into
the current PTE array in memory

R/W Undefine Required

03

0

30 4

BadVPN2(VASEGBITS-1:13)

32 31

R

3363

PTEBase

SEGBITS-13+3

SEGBITS-13+6

263MIPS® Architecture For Programmers Volume III: The MIPS64® and microMIPS64™ Privileged Resource Architecture, Re-
vision 5.04

If Config3CTXTC =1 then the pointer implemented by the XContext register can point to any power-of-two-sized PTE
structure within memory. This allows the TLB refill handler to use the pointer without additional shifting and mask
ing steps. Depending on the value in the XContextConfig register, it may point to an 8-byte pair of 32-bit PTEs within
a single-level page table scheme, or to a first l vel page directory entry in a two-level lookup scheme.

If Config3CTXTC =1 then the a TLB exception (Refill Invalid, or Modified causes bits VASEGBITS-1:SEGBITS-(X-Y) to
be written to a variable range of bits “(X-1):Y” of the XContext register, where this range corresponds to the contigu-
ous range of set bits in the XContextConfig register. The exception causes bits 63..62 of the virtual address to be writ-
ten into the R field Bits 63:X+2 are R/W to software, and are unaffected by the exception. Bits Y-1:0 are unaffected
by the exception. If X = 31 and Y = 4, i.e. bits 30:4 are set in XContextConfig, the behavior is identical to the standard
MIPS III XContext register (bits 30:4 are filled with A39:13 when SEGBITS equals 40). Although the fields h ve
been made variable in size and interpretation, the MIPS64 nomenclature is retained. Bits 63:X are referred to as the
PTEBase and R fields, and bits X-1:Y are referred to a BadVPN2.

The value of the XContext register is UNPREDICTABLE following a modification of the contents of th
XContextConfig register.

Figure 9.55 shows the format of the XContext Register when Config3CTXTC =1; Table 9.4 describes the XContext
register field Config3CTXTC =1.

R SEGBITS-13+5 ..
SEGBITS-13+4

(32..31 assuming
SEGBITS is 40)

The Region field contains bits 63..62 of the virtua
address.

For processors implementing Confi AT = 1 (access to
32-bit compatibility segments only), only the 0b00
and 0b11 values are supplied by the processor on an
exception.

R Undefine Required

BadVPN2 SEGBITS-13+3 .. 4
(30..4 assuming
SEGBITS is 40)

The Bad Virtual Page Number/2 field is written b
hardware on a miss. It contains bits VASEGBITS-1 13 of
the virtual address that missed.

R Undefine Required

0 3..0 Must be written as zero; returns zero on read. 0 0 Reserved

Table 9.3 XContext Register Fields when Config3CTXTC=0

Field
Description

Read /
Write

Reset
State

Complia
nceName Bits

Encoding Meaning

0b00 xuseg

0b01 xsseg: supervisor address region. If
Supervisor Mode is not imple-
mented, this encoding is reserved

0b10 Reserved

0b11 xkseg

9.52 XContext Register (CP0 Register 20, Select 0)

MIPS® Architecture For Programmers Volume III: The MIPS64® and microMIPS64™ Privileged Resource Architecture, Revi-
sion 5.04 264

Figure 9.55 XContext Register Format when Config3CTXTC=1
63 X+2 X+1 X X-1 Y Y-1 0

PTEBase R BadVPN2 0

Table 9.4 XContext Register Field Descriptions when Config3CTXTC=1

Fields

Description

Read
/

Write
Reset
State

Complian
ceName Bits

PTEBase Variable, 63:X+2
where
X in {63..0}.
May be null.

This field is for use by the operating system and i
normally written with a value that allows the operating
system to use the Context Register as a pointer to an
array of data structures in memory corresponding to
the address region containing the virtual address
which caused the exception.

R/W Undefine Required

R X+1:X
where
X in {63..0}.

May be null.

The Region field contains bits 63..62 of the virtua
address.

For processors implementing Confi AT = 1 (access to
32-bit compatibility segments only), only the 0b00
and 0b11 values are supplied by the processor on an
exception.

R Undefine Required

BadVPN2 Variable, (X-1):Y
where
X in {64..1} and
Y in {63..0}.
May be null.

This fiel is written by hardware on a TLB exception.
It contains bits VASEGBITS-1:SEGBITS-(X-Y) of the
virtual address that caused the exception.

R Undefine Required

0 Variable, (Y-1):0
where
Y in {63:1}.
May be null.

Must be written as zero; returns zero on read. R
or

R/W

0 (if R)
or

Undefine
(if R/W)

Reserved

Encoding Meaning

0b00 xuseg

0b01 xsseg: supervisor address region. If
Supervisor Mode is not imple-
mented, this encoding is reserved

0b10 Reserved

0b11 xkseg

265MIPS® Architecture For Programmers Volume III: The MIPS64® and microMIPS64™ Privileged Resource Architecture, Re-
vision 5.04

9.53 Reserved for Implementations (CP0 Register 22, all Select values)

Compliance Level: Implementation Dependent.

CP0 register 22 is reserved for implementation-dependent use and is not defined by the architecture

9.54 Debug Register (CP0 Register 23, Select 0)

MIPS® Architecture For Programmers Volume III: The MIPS64® and microMIPS64™ Privileged Resource Architecture, Revi-
sion 5.04 266

9.54 Debug Register (CP0 Register 23, Select 0)

Compliance Level: Optional.

The Debug register is part of the EJTAG specification Refer to that specificatio for the format and description of this
register.

267MIPS® Architecture For Programmers Volume III: The MIPS64® and microMIPS64™ Privileged Resource Architecture, Re-
vision 5.04

9.55 Debug2 Register (CP0 Register 23, Select 6)

Compliance Level: Optional.

The Debug2 register is part of the EJTAG specification. Refer to that specification for the format and description
this register.

9.56 DEPC Register (CP0 Register 24)

MIPS® Architecture For Programmers Volume III: The MIPS64® and microMIPS64™ Privileged Resource Architecture, Revi-
sion 5.04 268

9.56 DEPC Register (CP0 Register 24)

Compliance Level: Optional.

The DEPC register is a read-write register that contains the address at which processing resumes after a debug excep-
tion has been serviced. It is part of the EJTAG specificatio and the reader is referred there for the format and descrip-
tion of the register. All bits of the DEPC register are significant and must be writable

When a debug exception occurs, the processor writes the DEPC register with,

• the virtual address of the instruction that was the direct cause of the exception, or

• the virtual address of the immediately preceding branch or jump instruction, when the exception causing instruc-
tion is in a branch delay slot, and the Branch Delay bit in the Cause register is set.

The processor reads the DEPC register as the result of execution of the DERET instruction.

Software may write the DEPC register to change the processor resume address and read the DEPC register to deter-
mine at what address the processor will resume.

9.56.1 Special Handling of the DEPC Register in Processors That Implement the
MIPS16e ASE or microMIPS64 Base Architecture

In processors that implement the MIPS16e ASE or the microMIPS64 base architecture, the DEPC register requires
special handling.

When the processor writes the DEPC register, it combines the address at which processing resumes with the value of
the ISA Mode register:

DEPC ← resumePC63..1 || ISAMode0

“resumePC” is the address at which processing resumes, as described above.

When the processor reads the DEPC register, it distributes the bits to the PC and ISA Mode registers:

PC ← DEPC63..1 || 0
ISAMode ← DEPC0

Software reads of the DEPC register simply return to a GPR the last value written with no interpretation. Software
writes to the DEPC register store a new value which is interpreted by the processor as described above.

269MIPS® Architecture For Programmers Volume III: The MIPS64® and microMIPS64™ Privileged Resource Architecture, Re-
vision 5.04

9.57 Performance Counter Register (CP0 Register 25)

Compliance Level: Recommended.

The Architecture supports implementation-dependent performance counters that provide the capability to count
events or cycles for use in performance analysis. If performance counters are implemented, each performance counter
consists of a pair of registers: a 32-bit control register and a 32-bit or 64-bit counter register. To provide additional
capability, multiple performance counters may be implemented.

Performance counters can be configure to count implementation-dependent events or cycles under a specifie set of
conditions that are determined by the control register for the performance counter. The counter register increments
once for each enabled event. When the most-significan bit of the counter register is a one (the counter overfl ws), the
performance counter optionally requests an interrupt. In implementations of Release 1 of the Architecture, this inter-
rupt is combined in a implementation-dependent way with hardware interrupt 5. In Release 2 of the Architecture,
pending interrupts from all performance counters are ORed together to become the PCI bit in the Cause register, and
are prioritized as appropriate to the interrupt mode of the processor. Counting continues after a counter register over-
fl w whether or not an interrupt is requested or taken.

Each performance counter is mapped into even-odd select values of the PerfCnt register: Even selects access the con-
trol register and odd selects access the counter register. Table 9.5 shows an example of two performance counters and
how they map into the select values of the PerfCnt register.

More or less than two performance counters are also possible, extending the select fiel in the obvious way to obtain
the desired number of performance counters. Software may determine if at least one pair of Performance Counter
Control and Counter registers is implemented via the PC bit in the Config1 register. If the M bit is one in the Perfor-
mance Counter Control register referenced via a select field of n’, another pair of Performance Counter Control and
Counter registers is implemented at the select values of ‘n+2’ and ‘n+3’.

The Control Register associated with each performance counter controls the behavior of the performance counter.
Figure 9.56 shows the format of the Performance Counter Control Register; Table 9.6 describes the Performance
Counter Control Register fields

Table 9.5 Example Performance Counter Usage of the PerfCnt CP0 Register

Performance
Counter

PerfCnt Register
Select Value PerfCnt Register Usage

0 PerfCnt, Select 0 Control Register 0

PerfCnt, Select 1 Counter Register 0

1 PerfCnt, Select 2 Control Register 1

PerfCnt, Select 3 Counter Register 1

Figure 9.56 Performance Counter Control Register Format
31 30 29 25 24 23 22 16 15 14 11 10 5 4 3 2 1 0

M W Impl EC
0 PC

TD EventExt Event IE U S K EXL

9.57 Performance Counter Register (CP0 Register 25)

MIPS® Architecture For Programmers Volume III: The MIPS64® and microMIPS64™ Privileged Resource Architecture, Revi-
sion 5.04 270

Table 9.6 Performance Counter Control Register Field Descriptions

Fields

Description
Read /
Write

Reset
State ComplianceName Bits

M 31 If this bit is a one, another pair of Performance Counter
Control and Counter registers is implemented at an MTC0
or MFC0 select field alue of ‘n+2’ and ‘n+3’.

R Preset by
hardware

Required

W 30 Specifies the width of the corresponding Counter r gister,
as follows:

R Preset by
hardware

Required(Release
2)

Impl 29:25 This field is implementation-dependent and is not speci
fied by the architecture

If not used by the implementation, must be written as zero;
returns zero on read.

Undefine

0 if not used
by the imple-

mentation

Optional

EC 24..23 Resarved for Virtualization Module. 0 0 Reserved

0 22..16 Must be written as zero; returns zero on read 0 0 Reserved

PCTD 15 Performance Counter Trace Disable.
The PDTrace facility (revision 6.00 and higher) has the
ability to trace Performance Counter in its output. This bit
is used to disable the specified performance counter fro
being traced when performance counter trace is enabled
and a performance counter trace event is triggered.

RW 0 Required if
PDTrace Perfor-
mance Counter

Tracing feature is
implemented.

EventExt 14..11 In some implementations which support more than the the
64 encodings possible in the 6-bit Event field, the E en-
tExt field acts as an xtension to the Event field. In suc
instances the event selection is the concatentation of the
two fields, i.e., E entExt|Event.

The actual field width is implementation-dependent. A y
bits that are not implemented read as zero and are ignored
on write.

RW Undefine Optional

Encoding Meaning

0 Width of the corresponding Counter
register is 32 bits

1 Width of the corresponding Counter
register is 64 bits

Encoding Meaning

0 Tracing is enabled for this counter.
1 Tracing is disabled for this counter.

271MIPS® Architecture For Programmers Volume III: The MIPS64® and microMIPS64™ Privileged Resource Architecture, Re-
vision 5.04

Event 10..5 Selects the event to be counted by the corresponding
Counter Register. The list of events is implementation-
dependent, but typical events include cycles, instructions,
memory reference instructions, branch instructions, cache
and TLB misses, etc.
Implementations that support multiple performance
counters allow ratios of events, e.g., cache miss ratios if
cache miss and memory references are selected as the
events in two counters

R/W Undefine Required

IE 4 Interrupt Enable. Enables the interrupt request when the
corresponding counter overfl ws (the most-significant bi
of the counter is one. This is bit 31 for a 32-bit wide
counter or bit 63 of a 64-bit wide counter, denoted by the
W bit in this register).
Note that this bit simply enables the interrupt request. The
actual interrupt is still gated by the normal interrupt masks
and enable in the Status register.

R/W 0 Required

U 3 Enables event counting in User Mode. Refer to Section
3.4 “User Mode” on page 23 for the conditions under
which the processor is operating in User Mode.

R/W Undefine Required

S 2 Enables event counting in Supervisor Mode (for those pro-
cessors that implement Supervisor Mode). Refer to Sec-
tion 3.3 “Supervisor Mode” on page 23 for the conditions
under which the processor is operating in Supervisor
mode.
If the processor does not implement Supervisor Mode, this
bit must be ignored on write and return zero on read.

R/W Undefine Required

Table 9.6 Performance Counter Control Register Field Descriptions

Fields

Description
Read /
Write

Reset
State ComplianceName Bits

Encoding Meaning

0 Performance counter interrupt disabled
1 Performance counter interrupt enabled

Encoding Meaning

0 Disable event counting in User Mode
1 Enable event counting in User Mode

Encoding Meaning

0 Disable event counting in Supervisor
Mode

1 Enable event counting in Supervisor
Mode

9.57 Performance Counter Register (CP0 Register 25)

MIPS® Architecture For Programmers Volume III: The MIPS64® and microMIPS64™ Privileged Resource Architecture, Revi-
sion 5.04 272

The Counter Register associated with each performance counter increments once for each enabled event. Figure 9.57
shows the format of the Performance Counter Counter Register; Table 9.7 describes the Performance Counter
Counter Register fields

K 1 Enables event counting in Kernel Mode. Unlike the usual
definition of ernel Mode as described in Section
3.2 “Kernel Mode” on page 22, this bit enables event
counting only when the EXL and ERL bits in the Status
register are zero.

R/W Undefine Required

EXL 0 Enables event counting when the EXL bit in the Status
register is one and the ERL bit in the Status register is
zero.

Counting is never enabled when the ERL bit in the Status
register or the DM bit in the Debug register is one.

R/W Undefine Required

Figure 9.57 Performance Counter Counter Register Format
31
or
63 0

Event Count

Table 9.6 Performance Counter Control Register Field Descriptions

Fields

Description
Read /
Write

Reset
State ComplianceName Bits

Encoding Meaning

0 Disable event counting in Kernel
Mode

1 Enable event counting in Kernel Mode

Encoding Meaning

0 Disable event counting while EXL = 1,
ERL = 0

1 Enable event counting while EXL = 1,
ERL = 0

273MIPS® Architecture For Programmers Volume III: The MIPS64® and microMIPS64™ Privileged Resource Architecture, Re-
vision 5.04

Programming Note:

In Release 2 of the Architecture, the EHB instruction can be used to make interrupt state changes visible when the IE
fiel of the Control register or the Event Count Field of the Counter register are written. See sECTION
6.1.2.1 “Software Hazards and the Interrupt System” on page 91.

Table 9.7 Performance Counter Counter Register Field Descriptions

Fields

Description
Read/
Write Reset State ComplianceName Bits

Event
Count

31..0
or

63..0

Increments once for each event that is enabled by the
corresponding Control Register. When the most-signifi
cant bit is one, a pending interrupt request is ORed with
those from other performance counters and indicated by
the PCI bit in the Cause register.
The width of the counter is either 32 bits or 64 bits
depending on the value of the W bit in the corresponding
Performance Counter Control Register.

R/W Undefine Required

9.58 ErrCtl Register (CP0 Register 26, Select 0)

MIPS® Architecture For Programmers Volume III: The MIPS64® and microMIPS64™ Privileged Resource Architecture, Revi-
sion 5.04 274

9.58 ErrCtl Register (CP0 Register 26, Select 0)

Compliance Level: Optional.

The ErrCtl register provides an implementation-dependent diagnostic interface with the error detection mechanisms
implemented by the processor. This register has been used in previous implementations to read and write parity or
ECC information to and from the primary or secondary cache data arrays in conjunction with specific encodings o
the Cache instruction or other implementation-dependent method. The exact format of the ErrCtl register is imple-
mentation-dependent and not specified by the architecture. Refer to the processor specification for the format of th
register and a description of the fields

275MIPS® Architecture For Programmers Volume III: The MIPS64® and microMIPS64™ Privileged Resource Architecture, Re-
vision 5.04

9.59 CacheErr Register (CP0 Register 27, Select 0)

Compliance Level: Optional.

The CacheErr register provides an interface with the cache error detection logic that may be implemented by a pro-
cessor.

The exact format of the CacheErr register is implementation-dependent and not specifie by the architecture. Refer to
the processor specification for the format of this r gister and a description of the fields

9.60 TagLo Register (CP0 Register 28, Select 0, 2)

MIPS® Architecture For Programmers Volume III: The MIPS64® and microMIPS64™ Privileged Resource Architecture, Revi-
sion 5.04 276

9.60 TagLo Register (CP0 Register 28, Select 0, 2)

Compliance Level: Required if a cache is implemented; Optional otherwise.

The TagLo and TagHi registers are read/write registers that act as the interface to the cache tag array. The Index Store
Tag and Index Load Tag operations of the CACHE instruction use the TagLo and TagHi registers as the source or sink
of tag information, respectively.

The exact format of the TagLo and TagHi registers is implementation-dependent. Refer to the processor core specifica
tion for the format of this register and a description of the register fields. H wever, in all implementations. software
must be able to write zeros into the TagLo and TagHi registers, and then use the Index Store Tag cache operation to
initialize the cache tags to a valid state at power-up.

It is implementation-dependent whether there is a single TagLo register that acts as the interface to all caches, or a
dedicated TagLo register for each cache. If multiple TagLo registers are implemented, they occupy the even select
values for this register encoding, with select 0 addressing the instruction cache and select 2 addressing the data cache.
Whether individual TagLo registers are implemented or not for each cache, processors must accept a write of zero to
select 0 and select 2 of TagLo as part of the software process of initializing the cache tags at powerup.

Figure 9-58 Example TagLo Register Format
63 8 7 6 5 4 3 2 1 0

PTagLo PState L Impl 0 P

Table 10: Example TagLo Register Field Descriptions

Fields

Description
Read/
Write Reset State ComplianceName Bits

PTagLo 63..8 Specifie the upper address bits of the cache tag. Refer
to the processor-specific description for the detaile
definition

R/W Undefine Optional

PState 7:6 Specifies the state bits for the cache tag. Refer to th
processor-specific description for the detailed defin
tion.

R/W Undefine Optional

L 5 Specifies the lock bit for the cache tag. Refer to th
processor-specific description for the detailed defin
tion.

R/W Undefine Optional

Impl 4:3 This field is reser ed for implementations. Undefine Optional

0 2:1 Must be written as zero; returns zero on read. 0 0 Reserved

P 0 Specifies the parity bit for the cache tag. Refer to th
processor-specific description for the detailed defin
tion.

R/W Undefine Optional

277MIPS® Architecture For Programmers Volume III: The MIPS64® and microMIPS64™ Privileged Resource Architecture, Re-
vision 5.04

9.61 DataLo Register (CP0 Register 28, Select 1, 3)

MIPS® Architecture For Programmers Volume III: The MIPS64® and microMIPS64™ Privileged Resource Architecture, Revi-
sion 5.04 278

9.61 DataLo Register (CP0 Register 28, Select 1, 3)

Compliance Level: Optional.

The DataLo and DataHi registers are registers that act as the interface to the cache data array and are intended for
diagnostic operation only. The Index Load Tag operation of the CACHE instruction reads the corresponding data val-
ues into the DataLo and DataHi registers.

The exact format and operation of the DataLo and DataHi registers is implementation-dependent. Refer to the proces-
sor specification for the format of this r gister and a description of the fields

It is implementation-dependent whether there is a single DataLo register that acts as the interface to all caches, or a
dedicated DataLo register for each cache. If multiple DataLo registers are implemented, they occupy the odd select
values for this register encoding, with select 1 addressing the instruction cache and select 3 addressing the data cache.

279MIPS® Architecture For Programmers Volume III: The MIPS64® and microMIPS64™ Privileged Resource Architecture, Re-
vision 5.04

9.62 TagHi Register (CP0 Register 29, Select 0, 2)

Compliance Level: Required if a cache is implemented; Optional otherwise.

The TagLo and TagHi registers are read/write registers that act as the interface to the cache tag array. The Index Store
Tag and Index Load Tag operations of the CACHE instruction use the TagLo and TagHi registers as the source or sink
of tag information, respectively.

The exact format of the TagLo and TagHi registers is implementation-dependent. Refer to the processor specificatio
for the format of this register and a description of the fields. H wever, software must be able to write zeros into the
TagLo and TagHi registers and the use the Index Store Tag cache operation to initialize the cache tags to a valid state
at powerup.

It is implementation-dependent whether there is a single TagHi register that acts as the interface to all caches, or a
dedicated TagHi register for each cache. If multiple TagHi registers are implemented, they occupy the even select val-
ues for this register encoding, with select 0 addressing the instruction cache and select 2 addressing the data cache.
Whether individual TagHi registers are implemented or not for each cache, processors must accept a write of zero to
select 0 and select 2 of TagHi as part of the software process of initializing the cache tags at powerup.

9.63 DataHi Register (CP0 Register 29, Select 1, 3)

MIPS® Architecture For Programmers Volume III: The MIPS64® and microMIPS64™ Privileged Resource Architecture, Revi-
sion 5.04 280

9.63 DataHi Register (CP0 Register 29, Select 1, 3)

Compliance Level: Optional.

The DataLo and DataHi registers are registers that act as the interface to the cache data array and are intended for
diagnostic operation only. The Index Load Tag operation of the CACHE instruction reads the corresponding data val-
ues into the DataLo and DataHi registers.

The exact format and operation of the DataLo and DataHi registers is implementation-dependent. Refer to the proces-
sor specification for the format of this r gister and a description of the fields

281MIPS® Architecture For Programmers Volume III: The MIPS64® and microMIPS64™ Privileged Resource Architecture, Re-
vision 5.04

9.64 ErrorEPC (CP0 Register 30, Select 0)

Compliance Level: Required.

The ErrorEPC register is a read-write register, similar to the EPC register, at which processing resumes after a Reset,
Soft Reset, Nonmaskable Interrupt (NMI) or Cache Error exceptions (collectively referred to as error exceptions).
Unlike the EPC register, there is no corresponding branch delay slot indication for the ErrorEPC register. All bits of
the ErrorEPC register are significant and must be writable

When an error exception occurs, the processor writes the ErrorEPC register with:

• the virtual address of the instruction that was the direct cause of the exception, or

• the virtual address of the immediately preceding branch or jump instruction when the error causing instruction is
in a branch delay slot.

The processor reads the ErrorEPC register as the result of execution of the ERET instruction.

Software may write the ErrorEPC register to change the processor resume address and read the ErrorEPC register to
determine at what address the processor will resume

Figure 9.59 shows the format of the ErrorEPC register; Table 9.1 describes the ErrorEPC register fields

9.64.1 Special Handling of the ErrorEPC Register in Processors That Implement the
MIPS16e ASE or microMIPS64 Base Architecture

In processors that implement the MIPS16e ASE or microMIPS64 base architecture, the ErrorEPC register requires
special handling.

When the processor writes the ErrorEPC register, it combines the address at which processing resumes with the value
of the ISA Mode register:

ErrorEPC ← resumePC63..1 || ISAMode0

“resumePC” is the address at which processing resumes, as described above.

Figure 9.59 ErrorEPC Register Format
63 0

ErrorEPC

Table 9.1 ErrorEPC Register Field Descriptions

Fields

Description
Read /
Write

Reset
State ComplianceName Bits

ErrorEPC 63..0 Error Exception Program Counter R/W Undefine Required

9.64 ErrorEPC (CP0 Register 30, Select 0)

MIPS® Architecture For Programmers Volume III: The MIPS64® and microMIPS64™ Privileged Resource Architecture, Revi-
sion 5.04 282

When the processor reads the ErrorEPC register, it distributes the bits to the PC and ISAMode registers:

PC ← ErrorEPC63..1 || 0
ISAMode ← ErrorEPC0

Software reads of the ErrorEPC register simply return to a GPR the last value written with no interpretation. Software
writes to the ErrorEPC register store a new value which is interpreted by the processor as described above.

283MIPS® Architecture For Programmers Volume III: The MIPS64® and microMIPS64™ Privileged Resource Architecture, Re-
vision 5.04

9.65 DESAVE Register (CP0 Register 31)

Compliance Level: Optional.

The DESAVE register is part of the EJTAG specification. Refer to that specification for the format and description
this register.

The DESAVE register is meant to be used solely while in Debug Mode. If kernel mode software uses this register, it
would conflict with de ugging kernel mode software. For that reason, it is strongly recommended that kernel mode
software not use this register. If the KScratch* registers are implemented, kernel software can use those registers.

9.65 DESAVE Register (CP0 Register 31)

MIPS® Architecture For Programmers Volume III: The MIPS64® and microMIPS64™ Privileged Resource Architecture, Revi-
sion 5.04 284

285MIPS® Architecture For Programmers Volume III: The MIPS64® and microMIPS64™ Privileged Resource Architecture, Re-
vision 5.04

9.66 KScratchn Registers (CP0 Register 31, Selects 2 to 7)

Compliance Level: Optional, KScratch1 and KScratch2 at selects 2, 3 are recommended.

The KScratchn registers are read/write registers available for scratch pad storage by kernel mode software. These reg-
isters are 32bits in width for 32-bit processors and 64bits for 64-bit processors.

The existence of these registers is indicated by the KScrExist field within th Config4 register. The KScrExist fiel
specifies which of the selects are populated with a ernel scratch register.

Debug Mode software should not use these registers, instead debug software should use the DESAVE register. If
EJTAG is implemented, select 0 should not be used for a KScratch register. Select 1 is being reserved for future
debug use and should not be used for a KScratch register.

Figure 9.60 KScratchn Register Format
63 0

Data

Table 9.2 KScratchn Register Field Descriptions

Fields

Description
Read /
Write

Reset
State ComplianceName Bits

Data 63:0 Scratch pad data saved by kernel software. R/W Undefine Optional

Appendix A

MIPS® Architecture For Programmers Volume III: The MIPS64® and microMIPS64™ Privileged Resource Architecture, Revi-
sion 5.04 286

Alternative MMU Organizations

The main body of this specification describes the TLB-based MMU o ganization. This appendix describes other
potential MMU organizations.

A.1 Fixed Mapping MMU

As an alternative to the full TLB-based MMU, the MIPS64/microMIPS64 Architecture supports a lightweight mem-
ory management mechanism with fi ed virtual-to-physical address translation, and no memory protection beyond
what is provided by the address error checks required of all MMUs. This may be useful for those applications which
do not require the capabilities of a full TLB-based MMU. It is not anticipated that MIPS64 processors that implement
a fi ed-mapping MMU will require a 64-bit address capability. As a result, the description below is given assuming a
32-bit address.

A.1.1 Fixed Address Translation

Address translation using the Fixed Mapping MMU is done as follows:

• Kseg0 and Kseg1 addresses are translated in an identical manner to the TLB-based MMU: they both map to the
low 512MB of physical memory.

• Useg/Suseg/Kuseg addresses are mapped by adding 1GB to the virtual address when the ERL bit is zero in the
Status register, and are mapped using an identity mapping when the ERL bit is one in the Status register.

• Sseg/Ksseg/Kseg2/Kseg3 addresses are mapped using an identity mapping.

Supervisor Mode is not supported with a Fixed Mapping MMU.

Table A.1 lists all mappings from virtual to physical addresses. Note that address error checking is still done before
the translation process. Therefore, an attempt to reference kseg0 from User Mode still results in an address error
exception, just as it does with a TLB-based MMU.

Table A.1 Physical Address Generation from Virtual Addresses

Segment Name Virtual Address

Generates Physical Address

StatusERL = 0 StatusERL = 1

useg
suseg
kuseg

0x0000 0000
through

0x7FFF FFFF

0x4000 0000
through

0xBFFF FFFF

0x0000 0000
through

0x7FFF FFFF

kseg0 0x8000 0000
through

0x9FFF FFFF

0x0000 0000
through

0x1FFF FFFF

 Alternative MMU Organizations

287MIPS® Architecture For Programmers Volume III: The MIPS64® and microMIPS64™ Privileged Resource Architecture, Re-
vision 5.04

Note that this mapping means that physical addresses 0x2000 0000 through 0x3FFF FFFF are inaccessible
when the ERL bit is off in the Status register, and physical addresses 0x8000 0000 through 0xBFFF FFFF are
inaccessible when the ERL bit is on in the Status register.

Figure A.1 shows the memory mapping when the ERL bit in the Status register is zero; Figure A.2 shows the memory
mapping when the ERL bit is one.

kseg1
0xA000 0000

through
0xBFFF FFFF

0x0000 0000
through

0x0x1FFF FFFF

sseg
ksseg
kseg2

0xC000 0000
through

0xDFFF FFFF

0xC000 0000
through

0xDFFF FFFF

kseg3 0xE000 0000
through

0xFFFF FFFF

0xE000 0000
through

0xFFFF FFFF

Table A.1 Physical Address Generation from Virtual Addresses (Continued)

Segment Name Virtual Address

Generates Physical Address

StatusERL = 0 StatusERL = 1

A.1 Fixed Mapping MMU

MIPS® Architecture For Programmers Volume III: The MIPS64® and microMIPS64™ Privileged Resource Architecture, Revi-
sion 5.04 288

Figure A.1 Memory Mapping when ERL = 0

0x0000 0000

0x7FFF FFFF
0x8000 0000

0x9FFF FFFF
0xA000 0000

0xBFFF FFFF
0xC000 0000

0xDFFF FFFF
0xE000 0000

0xFFFF FFFF

kseg0

kseg1

kseg3

kuseg
suseg
useg

ksseg
sseg

kseg2

0x0000 0000

0x1FFF FFFF
0x2000 0000

0x3FFF FFFF
0x4000 0000

0xBFFF FFFF
0xC000 0000

0xDFFF FFFF
0xE000 0000

0xFFFF FFFF

Unmapped

kseg3 Mapped

ksseg
sseg Mapped

kseg2

Mapped

kseg0
kseg1

kuseg
suseg
useg

Mapped

A.2 Block Address Translation

MIPS® Architecture For Programmers Volume III: The MIPS64® and microMIPS64™ Privileged Resource Architecture, Revi-
sion 5.04 290

A.1.3 Changes to the CP0 Register Interface

Relative to the TLB-based address translation mechanism, the following changes are necessary to the CP0 register
interface:

• The Index, Random, EntryLo0, EntryLo1, Context, PageMask, Wired, and EntryHi registers are no longer required
and may be removed. The effects of a read or write to these registers are UNDEFINED.

• The TLBWR, TLBWI, TLBP, and TLBR instructions are no longer required and must cause a Reserved Instruc-
tion Exception.

A.2 Block Address Translation

This section describes the architecture for a block address translation (BAT) mechanism that reuses much of the hard-
ware and software interface that exists for a TLB-Based virtual address translation mechanism. This mechanism has
the following features:

• It preserves as much as possible of the TLB-Based interface, both in hardware and software.

• It provides independent base-and-bounds checking and relocation for instruction references and data references.

• It provides optional support for base-and-bounds relocation of kseg2 and kseg3 virtual address regions.

A.2.1 BAT Organization

The BAT is an indexed structure which is used to translate virtual addresses. It contains pairs of instruction/data
entries which provide the base-and-bounds checking and relocation for instruction references and data references,
respectively. Each entry contains a page-aligned bounds virtual page number, a base page frame number (whose
width is implementation-dependent), a cache coherence fiel (C), a dirty (D) bit, and a valid (V) bit. Figure A.4 shows
the logical arrangement of a BAT entry.

Figure A.3 Config Register Additions

31 30 28 27 25 24 16 15 14 13 12 10 9 7 6 4 3 2 0

M K23 KU 0 BE AT AR MT 0 VI K0

Table A.2 Config Register Field Descriptions

Fields

Description
Read/
Write Reset State ComplianceName Bits

K23 30:28 Kseg2/Kseg3 cacheability and coherency attribute. See
Table 9.2 on page 140 for the encoding of this field

R/W Undefine Required

KU 27:25 Kuseg cacheability and coherency attribute when
StatusERL is zero. See Table 9.2 on page 140 for the
encoding of this field

R/W Undefine Required

 Alternative MMU Organizations

291MIPS® Architecture For Programmers Volume III: The MIPS64® and microMIPS64™ Privileged Resource Architecture, Re-
vision 5.04

Figure A.4 Contents of a BAT Entry

The BAT is indexed by the reference type and the address region to be checked as shown in Table A.3.

Entries 0 and 1 are required. Entries 2, 3, 4 and 5 are optional and may be implemented as necessary to address the
needs of the particular implementation. If entries for kseg2 and kseg3 are not implemented, it is implementation-
dependent how, if at all, these address regions are translated. One alternative is to combine the mapping for kseg2 and
kseg3 into a single pair of instruction/data entries. Software may determine how many BAT entries are implemented
by looking at the MMU Size field of th Config1 register.

A.2.2 Address Translation

When a virtual address translation is requested, the BAT entry that is appropriate to the reference type and address
region is read. If the virtual address is greater than the selected bounds address, or if the valid bit is off in the entry, a
TLB Invalid exception of the appropriate reference type is initiated. If the reference is a store and the D bit is off in
the entry, a TLB Modified xception is initiated. Otherwise, the base PFN from the selected entry, shifted to align
with bit 12, is added to the virtual address to form the physical address. The BAT process can be described as fol-
lows:

i ← SelectIndex (reftype, va)
bounds ← BAT[i]BoundsVPN || 112

pfn ← BAT[i]BasePFN
c ← BAT[i]C
d ← BAT[i]D
v ← BAT[i]V
if (va > bounds) or (v = 0) then

InitiateTLBInvalidException(reftype)
endif
if (d = 0) and (reftype = store) then

InitiateTLBModifiedException()
endif
pa ← va + (pfn || 012)

Table A.3 BAT Entry Assignments

Entry Index
Reference

Type Address Region

0 Instruction useg/kuseg

1 Data

2 Instruction kseg2
(or kseg2 and kseg3)3 Data

4 Instruction kseg3

5 Data

VDCBasePFN

BoundsVPN

A.3 Dual Variable-Page-Size and Fixed-Page-Size TLBs

MIPS® Architecture For Programmers Volume III: The MIPS64® and microMIPS64™ Privileged Resource Architecture, Revi-
sion 5.04 292

Making all addresses out-of-bounds can only be done by clearing the valid bit in the BAT entry. Setting the bounds
value to zero leaves the first virtual page mapped

A.2.3 Changes to the CP0 Register Interface

Relative to the TLB-based address translation mechanism, the following changes are necessary to the CP0 register
interface:

• The Index register is used to index the BAT entry to be read or written by the TLBWI and TLBR instructions.

• The EntryHi register is the interface to the BoundsVPN field in the AT entry.

• The EntryLo0 register is the interface to the BasePFN and C, D, and V fields of the AT entry. The register has
the same format as for a TLB-based MMU.

• The Random, EntryLo1, Context, PageMask, and Wired registers are eliminated. The effects of a read or write to
these registers is UNDEFINED.

• The TLBP and TLBWR instructions are unnecessary. The TLBWI and TLBR instructions reference the BAT
entry whose index is contained in the Index register. The effects of executing a TLBP or TLBWR are UNDE-
FINED, but processors should signal a Reserved Instruction Exception.

A.3 Dual Variable-Page-Size and Fixed-Page-Size TLBs

Most MIPS CPU cores implement a fully associative Joint TLB. Unfortunately, such fully-associative structures can
be slow, can require a large amount of logic components to implement and can dissipate a lot of power. The number
of entries for a fully associative array that can be practically implemented is not large.

In high performance systems, it is desirable to minimize the frequency of TLB misses. In small and low-cost systems,
it is desirable to keep the implementation costs of a TLB to a minimum. This section describes an optional alternative
MMU configuration which decreases the implementation costs of a small TLB as well as all ws for a TLB that can
map a very large number of pages to be reasonably implemented.

A.3.1 MMU Organization

This alternative MMU configuration uses t o TLB structures.

1. This first TLB is called the Fi ed-Page-Size TLB or the FTLB.

• At any one time, all entries within the FTLB use a shared, common page size.

• The FTLB is not fully-associative, but rather set associative.

• The number of ways per set is implementation specific

• The number of sets is implementation specific

• The common page size is also implementation specific

• The common page size is allowed to be software configurable The choice of the common page size is done
once for the entire FTLB, not on a per-entry basis. This configuration by soft are can only be done after a

 Alternative MMU Organizations

293MIPS® Architecture For Programmers Volume III: The MIPS64® and microMIPS64™ Privileged Resource Architecture, Re-
vision 5.04

full flush/initializatio of the FTLB, before there are any valid entries within the FTLB. Implementations are
also allowed to support only one page size for the FTLB - in that case, the FTLB page size is fi ed by hard-
ware and not software configurable

• The EHINV TLB invalidate feature is required for FTLB implementation. The legacy method of using
reserved address values to represent invalid TLB entries is not guaranteed to work where the implementation
can limit what addresses are allowable at a specific TLB ind x.

2. The second TLB is called the Variable-Page-Size TLB or the VTLB.

• The choice of page size is done on a per-entry basis. That is, one VTLB entry can use a page size that is dif-
ferent from the size used by another VTLB entry.

• The VTLB is fully-associative.

• The number of entries is implementation specific

• The set of allowable page sizes for VTLB entries is implementation specific

Just as for the JTLB, both the FTLB and VTLB are shared between the instruction stream and the data stream. For
address translation, the virtual address is presented to both the FTLB and VTLB in parallel. Entries in both structures
are accessed in parallel to search for the physical address.

The use of two TLB structures has these benefits

• The implementation costs of building a set-associative TLB with many entries can be much less than that of
implementing a large fully-associative TLB.

• The existence of a VTLB retains the capability of using large pages to map large sections of physical memory
without consuming a large number of entries in the FTLB.

Random replacement of pages in the MMU happens mainly in the FTLB. In most operating systems, on-demand pag-
ing only uses one page size so the FTLB is sufficien for this purpose. Some of the address bits of the specifie virtual
address are used to index into the FTLB as appropriate for the chosen FTLB array size. The method of choosing
which FTLB way to modify is implementation specific

The VTLB is very similar to the JTLB. The C0_PageMask register is used to program the page size used for a partic-
ular VTLB entry.

The configuratio of the FTLB is reflecte in the FTLB field within the new Config4 register. The size of the VTLB
is reflecte in the Config1MMUSize-1 field The presence of the dual FTLB and VTLB is denoted by the value of 0x4 in
ConfigMT register field. These r gisters are described in “Changes to the COP0 Registers” on page 296.

Most implementations would choose to build a VTLB with a smaller number of entries and a FTLB with a larger
number of entries. This combination allows for many on-demand fi ed-sized pages as well as for a small number of
large address blocks to be simultaneously mapped by the MMU.

A.3.2 Programming Interface

The software programming interface used for the fully-associative JTLB is maintained as much as possible to
decrease the amount of software porting.

A.3 Dual Variable-Page-Size and Fixed-Page-Size TLBs

MIPS® Architecture For Programmers Volume III: The MIPS64® and microMIPS64™ Privileged Resource Architecture, Revi-
sion 5.04 294

Also for that purpose, each entry in the FTLB as well as the VTLB use one tag (VPN2) to map two physical pages
(PFN), just as in the JTLB. The entries in either array are accessed through the C0_EntryHi and C0_EntryLo0/1 regis-
ters.

Entries in either array (FTLB or VTLB) can be accessed with the TLBWI and TLBWR instructions.

The PageMask register is used to set the page size for the VTLB entries. This register is also used to choose which
array (FTLB or VTLB) to write for the TLBWR instruction.

For the rest of this section, the following parameters are used:

3. FPageSize - the page size used by the FTLB entries

4. FSetSize - Number of entries in one way of the FTLB.

5. FWays - Number of ways within a set of the FTLB.

6. VIndex - Number of entries in the VTLB.

For the C0_Index, the C0_Wired registers, the TLBP, TLBR and TLBWI instructions; the VTLB occupies indices 0
to VIndex-1. The FTLB occupies indices VIndex to VIndex + (FSetSize * FWays)-1.

The TLBP instruction produces a value which can be used by the TLBWI instruction without modification by soft
ware. When referring to the FTLB, the value is the concatenation of the selected FTLB way and set, and incremented
by the size of the VTLB. For example, {selected FTLB Way, selected FTLB Set} + VIndex.

If C0_PageMask is set to the page size used by the FTLB, the TLBWR instruction modifie entries within the FTLB
or the VTLB. It is implementation specific whether the VTLB will be modified for this cas

How the FTLB set-associative array is indexed is implementation specific. In a y indexing scheme, the least signifi
cant address bit that can be used for indexing is log2(FPageSize)+1. The number of index bits needed to select the
correct set within the FTLB array is log2(FSetSize).

Since the FTLB array can be modified through the TLBWI instruction, it is possible for soft are to choose an inap-
propriate FTLB index value for the specified virtual address. In this case, it is implementation specific whether
Machine Check exception is generated for the TLBWI instruction.

The EHINV TLB entry invalidate feature is required for a FTLB. Since it is implementation defined as to whether
particular FTLB index value can be used for a specific virtual address, the l gacy method of representing an invalid
TLB entry by using a predefined address alue is not guaranteed to work.

The method of choosing which FTLB way to modify is implementation specific

If C0_PageMask is not set to the page size used by the FTLB, the TLBWR instruction modifies entries within th
VTLB. The VTLB entry to be written is specified by the lo 2(VIndex) least significant bits of th C0_Random regis-
ter value.

For both the TLBWR and TLBWI instruction, it is implementation specific whether both (FTLB and VTLB) array
are checked for duplicate or overlapping entries and whether a Machine Check exception is generated for these cases.

A.3.2.1 Example with chosen FTLB and VTLB sizes

As an example, let’s assume an implementation chooses these values:

 Alternative MMU Organizations

295MIPS® Architecture For Programmers Volume III: The MIPS64® and microMIPS64™ Privileged Resource Architecture, Re-
vision 5.04

1. FPageSize - 4KB used by the FTLB entries

2. FSetSize - 128 in one way of the FTLB.

3. FWays - 4 ways within a set of the FTLB. (The FTLB has (128 sets x 4 ways/set) 512 entries, capable of map-
ping (512 entries x 2 pages/entry x 4KB/page) 4MB of address space simultaneously.

4. VIndex - 8 entries in the VTLB.

For the C0_Index, the C0_Wired registers, the TLBP, TLBR and TLBWI instructions; the VTLB occupies indices 0
to 7. The FTLB occupies indices 8 to 519.

The FTLB entries have a VPN2 field which starts at virtual address bit 12

The least significant virtual address bit that can be used for FTLB ind xing is virtual address 13. To index the FTLB
set-associative array, 7 index bits are needed.

In this simple example, the design uses contiguous virtual address bits directly for indexing the FTLB (it does not cre-
ate a hash for the FTLB indexing). The FTLB set-associative array is indexed using virtual address bits 19:13. The
TLBWR instruction uses these address bits held in C0_EntryHi.

In this simple example, the design uses a cycle counter of 2 bits for way selection within the FTLB.

The Random register field withi C0_Random is 3 bits wide to select the entry within the VTLB.

A.3.3 Changes to the TLB Instructions

TLBP

Both the VTLB and the FTLB are probed in parallel for the specified virtual address

If the address hits in the VTLB, C0_Index specifies the entry within the VTLB (a alue within 0 to VIndex-1).

If the address hits in the FTLB, C0_Index specifies the entry within the FTLB (a alue within VIndex to VIn-
dex+(FSetSize * FWays)-1). Which bits are used to encode the selected FTLB set as opposed to which bits are
used to encode the selected FTLB way is implementation specific, ut must match what is expected by the
TLBWI instruction implementation. C0_PageMask reflects the page size used by the FTLB

TLBR

Either a VTLB entry or a FTLB entry is read depending on the specified ind x in C0_Index.

Index values of 0 to VIndex-1 access the VTLB. Index values VIndex to VIndex+(FSetSize * FWays)-1 access
the FTLB.

TLBWI

Either the VTLB or FTLB entry is written depending on the specified ind x in C0_Index.

Index values of 0 to VIndex-1 access the VTLB. Index values VIndex to VIndex+(FSetSize * FWays)-1 access
the FTLB.

A.3 Dual Variable-Page-Size and Fixed-Page-Size TLBs

MIPS® Architecture For Programmers Volume III: The MIPS64® and microMIPS64™ Privileged Resource Architecture, Revi-
sion 5.04 296

It is implementation specifi if the hardware checks the VPN2 fiel of C0_EntryHi is appropriate for the specifie
set within the FTLB. The implementation may generate a machine-check exception if the VPN2 field is no
appropriate for the specified set

It is implementation-specific if the hard are checks both arrays (FTLB and VTLB) for valid duplicate or over-
lapping entries and if the hardware signals a Machine Check exception for these cases.

TLBWR

Either the VTLB or FTLB entry is written depending on the specified page size in C0_ ageMask.

If C0_PageMask is set to any page size other than that used by the FTLB, the TLBWR instruction modifies
VTLB entry. The VTLB entry is specified by the Random r gister field withi C0_Random.

If C0_PageMask is set to the page size used by the FTLB, the TLBWR modifie either a FTLB entry or a VLTB
entry. It is implementation specific which array is modified. The FTLB set-associa ve array is indexed in an
implementation-specific manne .

The method of selecting which FTLB way to modify is implementation specific

It is implementation specific if the hard are checks both arrays (FTLB and VTLB) for valid duplicate or over-
lapping entries and if the hardware signals a Machine Check exception for these cases.

A.3.4 Changes to the COP0 Registers

C0_Config4 (CP0 Register 16, Select 4)

A new register introduced to reflect the FTLB configuratio Config4MMUExtDef register field must be set to
value of 2 or 3 to reflect that the Dual VTLB and FTLB configuration is implemented. If eith Config4 is not
implemented or the Config4MMUExtDef field is not f ed to 2 or 3, the Dual VTLB/FTLB configuration is no
implemented.

If Config4MMUExtDef is fi ed to a value of 2 or 3, the FTLBPageSize, FTLBWays and FTLBSets fields reflect t
FTLB configuration Please refer to “Configuration Register 4 (CP0 Register 16, Select 4)” on page 245 for more
detail on this register.

C0_Config1 (CP0 Register 16, Select 1)

If Config4MMUExtDef is fi ed to a value of 2 or 3, the MMUSize-1 register fiel is redefine to reflec only the size
of the VTLB.

C0_Config (CP0 Register 16, Select 0)

If ConfigMT is fi ed to a value of 4, the implemented MMU Type is the dual FTLB and VTLB configuration

C0_Index (CP0 Register 0, Select 0)

If Config4MMUExtDef is fi ed to a value of 2 or 3, the register is redefined in this ay:

The value held in the Index field can refer to either an entry in the FTLB or the VTLB. Ind x values of 0 to
VIndex-1 access the VTLB. Index values VIndex to VIndex+(FSetSize * FWays)-1 access the FTLB.

 Alternative MMU Organizations

297MIPS® Architecture For Programmers Volume III: The MIPS64® and microMIPS64™ Privileged Resource Architecture, Re-
vision 5.04

Which bits in the register fiel which encode the FTLB set as opposed to which bits encode the FTLB way is
implementation specific, ut must match what is expected by the TLBWI instruction implementation.

C0_Random (CP0 Register 1, Select 0)

If Config4MMUExtDef is fi ed to a value of 2 or 3, the register is redefined in this ay:

If the value in C0_PageMask is not set to the page-size used by the FTLB, and a TLBWR instruction is exe-
cuted, a VTLB entry is modified. The Random r gister field is used to select the VTLB entry which is mod
ified

If the value in C0_PageMask is set to the page-size used by the FTLB, and a TLBWR instruction is exe-
cuted, a FTLB entry or a VTLB entry is modified. It is implementation specific whether t C0_RANDOM
register is used to select the FTLB entry.

The upper bound of the Random register field alue is VIndex.

C0_Wired (CP0 Register 6, Select 0)

If Config4MMUExtDef is fi ed to a value of 2 or 3, the Wired register field can only hold a alue of VIndex-1 or
less. That is, only VTLB entries can be wired down.

C0_PageMask (CP0 Register 5, Select 0)

If Config4MMUExtDef is fi ed to a value of 2 or 3, the register is redefined in this ay:

The Mask and MaskX field alues determine whether the VTLB or the FTLB is modified by a TLBW
instruction.

The Mask and MaskX register fields do not a fect the TLB address match operation for FTLB entries. The
page size used by the FTLB entries are specified by th Config4FPageSize register field

The software writeable bits in the Mask and MaskX field reflec what page sizes are available in the VTLB.
These fields do not reflect the page sizes which are vailable in the FTLB.

A.3.5 Software Compatibility

One of the main software visible changes introduced by this alternative MMU are the values reported in the C0_Index
register. Previously, it was just a simple linear index. For this alternative MMU configuration, the alue reflects bot
a selected way as well as a selected set when a FTLB entry is specified

Fortunately, this Index value isn’t frequently generated by software nor read by software. Instead, the contents of the
C0_Index register is generated by hardware upon a TLBP instruction. Software then just issues the TLBWI instruc-
tion once the C0_EnLo* registers have been appropriately modified

Another software visible change is that the MMUSize-1 field no longer reports the entire MMU size. or TLB initial-
ization and TLB flushing the contents of Config1MMUSize-1, Config4FTLBWays and Config4FTLBSets register field must
all be read to calculate the entire number of TLB entries that must be initialized. TLB initialization and flushing ar
the only times software needs to generate an Index value to write into the C0_Index register.

A.3 Dual Variable-Page-Size and Fixed-Page-Size TLBs

MIPS® Architecture For Programmers Volume III: The MIPS64® and microMIPS64™ Privileged Resource Architecture, Revi-
sion 5.04 298

Only the VTLB entries may be wired down. This limitation is due to using some of the EntryHi VPN2 bits to index
the FTLB array.

If a page using the FTLB page-size is to be wired down, that page must be programmed into the VTLB using the
TLBWI instruction, as the TLBWR instruction would only access the FTLB in that situation and could not access any
wired-down TLB entry. The TLBWI instruction is normally used for wired-down pages, so this restriction should not
affect existing software.

The EHINV TLB entry invalidate feature is required for a FTLB. Since it is implementation-defined as to whether
particular FTLB index value can be used for a specific virtual address, the l gacy method of representing an invalid
TLB entry by using a predefined address alue is not guaranteed to work.

 Alternative MMU Organizations

299MIPS® Architecture For Programmers Volume III: The MIPS64® and microMIPS64™ Privileged Resource Architecture, Re-
vision 5.04

Appendix B

MIPS® Architecture For Programmers Volume III: The MIPS64® and microMIPS64™ Privileged Resource Architecture, Revi-
sion 5.04 300

Revision History

Revision Date Description

0.92 January 20, 2001 Internal review copy of reorganized and updated architecture documentation.

0.95 March 12, 2001 Clean up document for external review release

1.00 August 29, 2002 Update based on review feedback:
• Change ProbEn to ProbeTrap in the EJTAG Debug entry vector location discussion.
• Add cache error and EJTAG Debug exceptions to the list of exceptions that do not go through

the general exception processing mechanism.
• Fix incorrect branch offset adjustment in general exception processing pseudo code to deal

with extended MIPS16e instructions.
• Add Confi VI to denote an instruction cache with both virtual indexing and virtual tags.
• Correct XContext register description to note that both BadVPN2 and R fields are UNPRE

DICTABLE after an address error exception.
• Note that Supervisor Mode is not supported with a Fixed Mapping MMU.
• Define agLo bits 4..3 as implementation-dependent.
• Describe the intended usage model differences between Reset and Soft Reset Exceptions.
• Correct the minimum number of TLB entries to be 3, not 2, and show an example of the need

for 3.
• Modify the description of PageMask and the TLB lookup process to acknowledge the fact

that not all implementations may support all page sizes.

1.90 September 1, 2002 Update the specification with the changes introduced in Release 2 of the Architecture. Change
in this revision include:
• The following new Coprocessor 0 registers were added: EBase, HWREna, IntCtl, PageGrain,

SRSCtl, SRSMap.
• The following Coprocessor 0 registers were modified: Cause, Config, Config2, Conf

EntryHi, EntryLo0, EntryLo1, PageMask, PerfCnt, Status, WatchHi, WatchLo.
• The descriptions of Virtual memory, exceptions, and hazards have been updated to reflec the

changes in Release 2.
• A chapter on GPR shadow regsiters has been added.
• The chapter on CP0 hazards has been completely rewriten to reflect the Release 2 changes

 Revision History

301MIPS® Architecture For Programmers Volume III: The MIPS64® and microMIPS64™ Privileged Resource Architecture, Re-
vision 5.04

2.00 June 9, 2003 Complete the update to include Release 2 changes. These include:
• Make bits 12..11 of the PageMask register power up zero and be gated by 1K page enable.

This eliminates the problem of having these bits set to 0b11 on a Release 2 chip in which ker-
nel software has not enabled 1K page support.

• Correct the address of the cache error vector when the BEV bit is 1. It should be
0xBFC0.0300,. not 0xBFC0.0200.

• Correct the introduction to shadow registers to note that the SRSCtl register is not updated at
the end of an exception in which StatusBEV = 1.

• Clarify that a MIPS16e PC-relative load reference is a data reference for the purposes of the
Watch registers.

• Add note about a hardware interrupt being deasserted between the time that the processor
detects the interrupt request and the time that the software interrupt handler runs. Software
must be prepared for this case and simply dismiss the interrupt via an ERET.

• Add restriction that software must set EBase15 12 to zero in all bit positions less than or equal
to the most significan bit in the vector offset. This is only required in certain combinations of
vector number and vector spacing when using VI or EIC Interrupt modes.

• Add suggested software TLB init routine which reduced the probability of triggering a
machine check.

2.50 July 1, 2005 Changes in this revision:
• Correct the encoding table description for the CausePCI bit to indicate that the bit controlls

the performance counter, not the timer interrupt.
• Correct the figure Interrupt Generation for External Interrupt Controller Interrupt Mode t

show CauseIP1 0 going to the EIC, rather than StatusIP1 0
• Update all files to FrameMa er 7.1.
• Update reset exception list to reflect missing Release 2 reset requirements
• Define bits 31..30 in th HWREna register as access enables for the implementation-depen-

dent hardware registers 31 and 30.
• Add definition for Coprocessor 0 Enable to Operating Modes chapte .
• Add K23 and KU fields to main Config gister definition as a pointer to the Fi ed Mapping

MMU appendix.
• Add specifi note about the need to implement all shadow sets between 0 and HSS - no holes

are allowed.
• Change the hazard from a software write to the SRSCtlPSS field and a RDPGPR an

WRPGPR and instruction hazard vs. an execution hazard.
• Correct the pseudo-code in the cache error exception description to reflect the Release

change that introduced EBase.
• Document that EHB clears instruction state change hazards for writes to interrupt-related

fields in th Status, Cause, Compare, and PerfCnt registers.
• Note that implementation-dependent bits in the Status and Config registers should be

define in such a way that standard boot software will run, and that software which preserves
the value of the field when writing the r gisters will also run correctly.

• With Release 2 of the Architecture the FR bit in the Status register should be a R/W bit, not a
R bit.

• Improve the organization of the CP0 hazards table, and document that DERET, ERET, and
exceptions and interrupts clear all hazards before the instruction fetch at the target instruction.

• Add list of MIPS® MT CP0 registers and MIPS MT and MIPS® DSP present bits in the
Config3 register.

Revision Date Description

MIPS® Architecture For Programmers Volume III: The MIPS64® and microMIPS64™ Privileged Resource Architecture, Revi-
sion 5.04 302

2.60 Jun 25, 2008 Changes in this revision:
• Add the UserLocal register and access to it via the RDHWR instruction.
• Operating Modes - footnote about ksseg/sseg
• COP3 no longer usable for customer extensions
• EIC Mode allows VectorNum != RIPL
• CP0Regs Table - added missing EJTAG & PDTrace Registers
• C0_DataLo/Hi are actually R/W
• Hazards table - added a bunch of missing ones
• Various typos fi ed.

2.61 August 01, 2008 • In the Status register description, the ERL behavior description was incorrect in saying only
29 bits of kuseg becomes uncached and unmapped.

2.62 January 2,009 • CCRes is accessed through $3 not $4 - HWENA register affected.
• PCTD bit added to C0_PerfCtl.

2.70 January 22, 2009 MIPS Technologies-only release for internal review:
• Added BigPages feature - Pages larger than 256MB are supported. C0_PageMask and

C0_Config3 affected.
• Added CP0 Reg 31, Select 2 & 3 as kernel scratch registers.
• Added VTLB/FTLB optional MMU configuration to Appendix A an Config4 register for

these new MMU configuration
• Added CDMM chapter, CDMMBase COP0 Register, CDMM bit in C0_Config3, FDCI bit

in C0_Cause register and IPFDC field i IntCtl register.

2.71 January 28, 2009 MIPS Technologies-only release for internal review:
• EIC mode - revision 2.70, was actually missing the new option of EIC driving an explicit vec-

tor offset (not using VectorNumbers).
• Clarified the t xt and diagrams for the 3 EIC options - RIPL=VectorNum, Explicit Vector-

Num; Explicit VectorOffset.

2.72 April 20, 2009 MIPS Technologies-only release for internal review:
• Table was incorrectly saying ECRProbEn selected debug exception Vector. Changed to ECR-

ProbTrap.
• Added MIPS Technologies traditional meanings for CCA values.
• Added list of COP2 instruction to COPUnusable Exception description.
• Added statement that only uncached access is allowed to CDMM region.
• Updated Exception Handling Operation pseudo-code for EIC Option_3 (EIC sends entire

vector).
•

2.73 April 22, 2009 MIPS Technologies-only release for internal review:
• Fixed comments for ASE.

2.74 June 03, 2009 MIPS Technologies-only release for internal review:
• Added CDMM Enable Bit in CDMMBase COP0 register
• Reserved CCA values can be used to init TLB; just can’t be used for mapping.

2.75 June 12, 2009 MIPS Technologies-only release for internal review:
• CDMMBase_Upper_Address Field doesn’t have a fi ed reset value.
• Added DSP State Disabled Exception to C0_Cause Exception Type table.

2.80 July 20, 2009 • FTLB and VTLB MMU configuration denoted by 0x4 i ConfigMT
• Added TLBP -> TLBWI hazard
• Added KScrExist field i Config4.

Revision Date Description

 Revision History

303MIPS® Architecture For Programmers Volume III: The MIPS64® and microMIPS64™ Privileged Resource Architecture, Re-
vision 5.04

2.81 September 22, 2009 MIPS Technologies-only release for internal review:
• ContextConfig R gister description added.
• Context Register description updated for SmartMIPS behavior.
• EntryLo* register descriptions updated for RI & XI bits.
• TLB description and pseudo-code updated for RI & XI bits.
• PageMask register updated for RIE and XIE bits.
• Config3 r gister updated for CTXTC and RXI bits.
• Reserve MCU ASE bits in C0_Cause and C0_Status.
• Clean up description for KScratch registers - selects 2&3 are recommended, but additional

scratch registers are allowed.

2.82 January 19, 2010 MIPS Technologies-only release for internal review:
• Added Debug2 register.

3.00 March 8, 2010 • RI/XI feature moved from SmartMIPS ASE.
• microMIPS features added
• MCU ASE features added.
• XI and RI exceptions can be programmed to use their own exception codes instead of using

TLBL code.
• XI and RI can be independently implemented as XIE and RIE bits are allowed to be Read-

Only.
• TCOpt Register added to C0 Register list.
• Added encoding (0x7) for 32 sets for one cache way.

3.05 July 07, 2010 • CMGCRBase register added.
• Lower bits of C0_Context register allowed to be write-able if Config3.CTXTC=1 an

Config3.SM=0

3.10 July 27, 2010 • Add XContextConfig r gister.
• Explain the limits of the BadVPN2 field within Cont xt and XContext registers and the rela-

tionships with the writeable bits within ContextConfig and XCont xtConfig r gisters.

3.11 April 24, 2011 MIPS Technologies-only release for internal review:
• FPR registers are UNPREDICTABLE after change of Status.FR bit.
• 1004K did not support CCA=0
• Config4 - KScratch R gisters, mention that select 1 is reserved for future debugger use.
• Context Register - the bit subscripts describing which VA bits go into the BadVPN2 fiel was

incorrect for the case when the ContextConfig r gister is used. The correct VA bits are 31:31-
((X-Y)-1) for MIPS32, 63:63-((X-Y)-1) for MIPS64.

3.12 April 28, 2011 • XContext & XContextConfig r gisters - be more explicit of the SEGBITS limitations.
• ContextConfig R gister is only 32-bits in width to be more compatible to MIPS32.

3.13 November 10, 2011 MIPS Technologies-only release for internal review:
• MIPS32 compatibility location for RI/XI EntryLo bits.
• Nested Exception handling support. Config5 r gister added.

3.14 February 17, 2012 MIPS Technologies-only release for internal review:
• Segmentation Control, EVA scheme added:
a) Adds SegCfg0, SegCfg1, SegCfg2 registers
b) SegCtl - Modifies EBase, Config
• TLB Invalidate feature.

3.50 September 20, 2012 • Added BadInstr & BadInstrP registers.
• Added extended ASID field in EntryHi and atchHi.
• Added Hardware Page Table Walking Feature

3.51 October 2, 2012 MIPS Technologies-only release for internal review:
• Hardware Page Table Walker - previous description wasn’t fully correct. PTEVld bit is only

used for Directory PTE entries as leaf PTE entries are always loaded from memory.
• Added TLB init routine for SegmentationControl/EVA.

Revision Date Description

MIPS® Architecture For Programmers Volume III: The MIPS64® and microMIPS64™ Privileged Resource Architecture, Revi-
sion 5.04 304

3.52 November 12, 2012 • SegCtl Overlay segment(s) are available in kernelmode. Re-iterate that.
• FTLB/VTLB - if PageMask set to FTLB size, allowed to modify VTLB.
• implementation-dependent whether Watch Registers match on 2nd half of microMIPS

instruction.
• Hardware Page Table Walker - added option so Directory PTE entries can represent power-of-

4 memory region, using Dual Page Method.
• Optional PageGrain.MCCause field to record di ferent types of Machine Check Exceptions.

5.00 December 14, 2012 • R5 changes - include MSA and Virtualization registers and control bits in Register table.
• R5 changes - include MSA and Virtualization exceptions in Cause exception types.
• R5 changes - MT and DSP ASEs -> Modules
• R5 changes - MDMX now deprecated.
• “Preset” -> “Preset by hardware”

5.01 December 16, 2012 • No technical content change:
• Update cover logos
• Update copyright text

5.02 April 2012 • R5 changes: FR=1 64-bit FPU register model required is required, if floating point is sup
ported. Section 3.5.2 64-bit FPR Enable. Table 9.41 Status Register Field Descriptions, FR
(floating point r gister mode) bit.

• R5 extension: Table 9.57 Config R gister Field Descriptions, AR bit (Architecture revision
level). AR=1 indicates Release 2 or Release 3 or Release 5. Like Release 3, all features intro-
duced in Release 5 are optional.

• Correction: Table 9.59 BPG, Big Pages feature, not supported in MIPS32, only in MIPS64

5.03 September 9, 2013 • Update document template

5.04 September 29, 2013 MAAR initial version
• Add MAAR, MAARI and Config5.MR
• Table 1.1 typo. Speculate=1 should not contain comment about oldest in machine. Meaning-

ful to Speculate=0. Moved outside sub-table.
• Added a condition to sw write of MAARI.Index - write of all 1s returns the largest value sup-

ported.

5.04 January 15, 2013 XPA initial Version.
• Add extended EntryLo0/1, LLAddr, TagLo, CDMMBase, CMGCRBase
• PageGrain.ELPA, Config3.L A, Config5.MV
• Remove comment about SW having to initialize the extension bits (of EntryLo,TagLo) if

PageGrain.ELPA=0. HW had been asked to reset to 0, but the current POR solution is for
mtc0 to 0 out the extension bits that are writeable. HW is responsible for zeroing out read-
only bits on operation that updates the bits.

• Remove CDMMBase and CMGCRBase from list of COP0 registers requiring extensions.
The two registers support upto 36b PA which is sufficient for their purpose. Less testing

• Add a config bit, Config5.MVH, for mth/mfhc0. Since mth/mfhc0 may be used indepe
dently of XPA in the future, it is easier for software to query one bit instead of multiple. Fur-
ther Config3.L A=1 on 64-bit HW need not mean mthc0/mfhc0 are implemented.

Revision Date Description

Copyright © Wave Computing, Inc. All rights reserved.
www.wavecomp.ai

